
UNIVERSIDADE FEDERAL DE GOIÁS
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Matheus Capela

Markov monogamy inequalities

Goiânia
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Resumo

O estudo dos limites na comunicação com canais ruidosos é um problema central na teoria

de informação. Data processing inequalities são de fundamental importância sob esta per-

spectiva. Entretanto, estas não são as as únicas condições existentes sob o processamento

de informação. Neste trabalho, apresentamos uma nova categoria de condições chamadas

Markov monogamy inequalities. Estes novos resultados são aplicados ao estudo e carac-

terização de processos não-Markovianos clássicos e quânticos. De grande importância, as

condições Markov monogamy inequalities revelam-se serem mais eficientes que as data pro-

cessing inequalities na certificação de processos não-Markovianos em determinados exemplos.

Palavras-chave: desigualdades informacionais
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Abstract

The study of the limits on the communication with noisy channels is of fundamental concern

in information theory. Data processing inequalities are ubiquitous in this sense. Nevertheless,

those are not a complete set of conditions on the processing of information. Here, we develop

a novel class of information conditions called Markov monogamy inequalities. We apply the

novel information inequalities to the problem of witnessing classical and quantum non-Markov

processes. Importantly, we show that Markov monogamy may certify non-Markovianity

beyond what is possible with data processing inequalities.

Keywords: information inequalities
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Chapter 1

Introduction

This thesis is concerned with classical and quantum information inequalities, defined as

constraints on information processing under well-defined class of operations. Here, we focus

on the case of Markov processes. In this chapter we aim to motivate the reader on the

relevance of the conditions considered here.

1.1 Classical information inequalities

Information theory primarily deals with the problem of communication between distant

parties [3]. Therefore, it is of ubiquitous relevance the description and understanding of

the physical medium allowing for communication (channel). Let us start with the original

formulation for which the communication terminals and channels are represented as classical

probabilistic events.

The channel in a communication scheme can be imperfect. That is, the input terminal

might eventually send a message x, while the output terminal receives a different message

y. This effect is called noise, and usually it is a variable out of control of the parties willing

for communication. The overall action of a classical channel is described as a conditional

probability distribution p(y|x). So we might as well wonder whether would the reliable

communication between distant terminals through a noisy channel be possible. Information

theory answers this question affirmatively, providing the appropriate strategies to deal with

inherent noise, and moreover, setting the limits under which reliable communication is pos-



sible. The following short description is based on standard text-books on information theory

[4, 5, 6].

The strategy to deal with noise consists in considering several independent uses of the

given channel in order to simulate (binary) noiseless channels. The communication protocol

is defined by local operations performed by the input and output terminal as follows. The

process starts with the input terminal encoding k input binary variables Uk = U1 × · · · ×Uk
into n channel’s input variables Xn = X1 × · · · ×Xn. Then, the block Xn is sent through n

independent uses of the channel p(Y |X), that is, p(Y n|Xn) = p(Y1|X1) · · · p(Yn|Xn). Finally,

the output joint variable Y n is decoded into the final binary variable V k representing the

message received. Importantly, the complete communication process is represented as a

Markov process Uk → Xn → Y n → V k.

The goal of the encoding-decoding scheme is thus to maximize the communication ratio

R = k/n, while keeping the probability of error Pr{Uk 6= V k} small as possible. The channel

coding theorem states that communication can be made reliable in the asymptotic regime,

that is, taking the limit n→∞.

The direct part of the channel-coding theorem assures there is a reliable encoding-decoding

scheme with communication ratio R no larger than the channel capacity defined as

C = max
p(X)

I(X : Y ), (1.1)

where I(X : Y ) is the mutual information of the input and output variables, and the max-

imization is over every possible probability distribution of the input terminal. Therefore,

mutual information shows up to be a fundamental correlation function in communication

problems.

The converse part of the channel-coding theorem states that there is no reliable encoding-

decoding scheme with communication ratio R larger than the channel capacity C. The key

ingredient in the proof of this result is the data processing inequality

I(Xn : Y n) ≥ I(Uk : V k). (1.2)

Information inequalities such as the condition above are of remarkable relevance towards
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deriving necessary conditions on the possible operations on communication systems. This

is enforced by the channel-coding theorem. Therefore, data processing inequalities are fun-

damental tools in information theory [7, 8, 9, 10, 11, 12, 13, 14]. Nevertheless, would data

processing inequalities be the only constraints on encoding-decoding protocols? This is the

main question addressed in this thesis. We show the existence of a novel class of information

inequalities called Markov monogamy inequalities.

Interestingly, the channel capacity also imply on information inequalities for the transfor-

mation of channels under encoding and decoding with shared randomness. This is referred

as Shannon inclusion [15] and has been extensively explored in literature [16, 17, 18]. The

particular case of transforming channels under sole postprocessing operations is called the

theory of comparison [19, 20]. Nevertheless, we do not consider this type of information

inequalities and operations in this thesis.

1.2 Quantum information inequalities

The development of quantum mechanics has changed dramatically the paradigms in sci-

ence, and it has not been different with information theory. The possibility of more efficient

and secure communication via quantum processes became a central perspective leading to

the so-called quantum information theory.

Now, the coherent information Ic(ρ; Λ) – defined in chapter 6 – of a quantum system in

the state ρ with respect to the quantum channel Λ becomes the relevant quantity for the

definition of quantum information inequalities [21]. The quantum data processing inequality

reads

Ic(ρ; Λ1) ≥ Ic(ρ; Λ2 ◦ Λ1), (1.3)

for every quantum state ρ, and quantum channels Λ1,Λ2.

The quantum data processing inequality above is also ubiquitous for deriving quantum

operational results. For instance, there is a recovery operation R for which [21]

R ◦ Λ(ρ) = ρ, (1.4)

3



whenever the ρ and Λ satisfy the condition Ic(ρ; id) = Ic(ρ; Λ), where id denotes the noiseless

identity quantum channel. Clearly, this condition must hold for every quantum state ρ if Λ

is a unitary channel.

The development of quantum information inequalities and constraints on quantum in-

formation processing has been extensively explored as well since then [22, 23, 24, 25, 26,

27, 28, 29, 30]. Once again, the quantum data processing inequality in Eq. (1.3) is not the

only possible information inequality for quantum processes. Here, we show that the Markov

monogamy inequalities can be extended to the quantum realm. This is the main original

result reported in this thesis.

1.3 Outline

This thesis is divided into two parts. The first part deals with classical Markov monogamy

inequalities, and is presented in chapter 2, chapter 3 and chapter 4. The second part treats

quantum Markov monogamy inequalities, and is related to chapters 5, 6, 7 and 8. The

remaining chapters of this thesis are organized as follows.

Chapter 2 briefly reviews probabilistic processes. The concepts are presented in

such way that a broad audience can understand the main results in the thesis.

We consider the definition of classical systems, operations and processes. Then,

we introduce Markov processes accordingly. We consider a detailed example of

classical processes violating the Markov regime.

Chapter 3 deals with data processing inequalities for classical Markov processes.

Here, we show how information measures such as mutual information imply con-

straints on classical Markovianity. We derive this particular instance of classical

information inequalities.

Chapter 4 presents the Markov monogamy inequalities for classical Markov pro-

cesses. This is original result first announced in [2, 1]. We discuss in detail the

derivation of several classical information inequalities. Then, we show how the

classical information inequalities can be used in witnessing non-Markovianity. Fi-

4



nally, we make a conjecture on the general form of classical Markov monogamy

inequalities.

Chapter 5 reviews quantum systems, operations and processes. We consider

the notation, definitions and results used throughout the next chapters. This is

done in order to make the text accessible to a broad audience. The exposition

do not contain the derivation of the main results, nevertheless, enough references

are provided to the interested reader. The expert reader can skip this chapter

without further consequences.

Chapter 6 treats the quantum counterpart of the data processing inequalities

introduced in chapter 3. There, we consider the information inequalities for

quantum processes previously reported in literature. Importantly, this sets an

appropriate framework for the establishment of novel information inequalities.

Chapter 7 deals with the quantum version of the Markov monogamy inequalities.

This is the main original result in this thesis, previously reported in [1]. We

present the derivation of all the novel information inequalities considered. Then,

we explore how the quantum information inequalities can be used in witnessing

non-Markov processes. We conclude the discussion arguing on the conjecture on

quantum Markov monogamy inequalities.

Chapter 8 shows how the quantum information inequalities can be extended in

order to allow for interventions along the process. This is done using the process

tensor formalism. Particularly, we derive three versions of the quantum Markov

monogamy inequality for a four-time-step quantum Markov process allowing for

interventions on the quantum system of interest. We also show how this approach

can be useful in witnessing quantum non-Markovianity in the examples previously

considered.

Chapter 9 concludes the thesis with a summary of the results and a discussion

on the possible directions which could be undertaken in future studies.
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Part I

Classical information inequalities
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Chapter 2

Classical processes

2.1 Classical systems

To each classical system it is associated an outcome space. Here, we denote both a

classical system and its associated alphabet with the same symbol. Let X be a classical

system. The state of a classical system is a probability distribution. That is, a function

p : X → R assigning a value

p(x) ≥ 0, (2.1)

to each outcome x in X. Here, R denotes the set of real numbers. In addition, p also satisfy

the normalization condition ∑
x∈X

p(x) = 1. (2.2)

The state of a system X is denoted p(X) in order to explicitly define its domain when

necessary. We only consider classical systems with finite cardinality, that is, systems with

finite number of outcomes. Here, we only present a brief description of classical probabilistic

processes in similar way as introduced in standard text-books in information theory such as

[4, 5, 6]. The interested reader is also referred to Ref. [31, 32, 33] for a discussion on the

mathematical theory of probability.

In turn, n-time-step classical processes are multi-partite classical systems X1 × · · · ×Xn.

The symbol × represents the Cartesian product, defining the ordered lists of outcomes.

Intuitively, a classical process represents a classical system observed in different instances of



time. Furthermore, the subsystems of a classical process do not necessarily have the same

outcome space. That is because we allow for discarding and adding classical systems through

the process, for instance.

An example of a process with different subsystems would be defined by throwing a dice

first, then flipping a coin. This would be defined by the Cartesian product of a set with

cardinality six and a set with cardinality 2, thus accounting for every possible result of the

total experiment. We can also define a process for which the first round is defined by flipping

a coin, but in the second round we add a dice to the total system. This would be described

by the Cartesian product of a set with cardinality 2 and a set with cardinality 12. We could

also have started the first round with a total classical system defined as a dice and a coin,

and in the second round we could discard the coin.

Hence, a classical process X1× · · · ×Xn is described by the joint probability distribution

p : X1 × · · · ×Xn → R. (2.3)

Important is the definition of a marginal system. Let X1 × X2 be a bipartite classical

system drawn according to the joint probability distribution p. We define the classical state

of a marginal system X1 by the probability distribution with values

p(x1) =
∑
x2

p(x1, x2), (2.4)

for any outcome x1 of X1. Note we use the same symbol p to denote the classical state of

the joint system X1 ×X2 and of the marginal system X1.

Similarly, the probability masses of the marginal system X2 are defined with

p(x2) =
∑
x1

p(x1, x2), (2.5)

for every outcome x2 of X2. Once again the states of X1 ×X2 and X2 are denoted with the

same symbol. When necessary, we use p(X1), p(X2) and p(X1, X2) to distinguish the states

of the systems X1, X2 and X1 ×X2, respectively. Similar convention is also adopted in the

following definition for multi-partite classical systems.
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The concept of marginalization can be generalized to arbitrary n-partite classical systems

X1×· · ·×Xn. We now define the distribution of a marginal system with 1 ≤ m ≤ n arbitrary

variables. Define a bijective function f : {1, . . . , n} → {1, . . . , n} such that f(1) ≤ · · · ≤ f(m)

and f(m + 1) ≤ · · · ≤ f(n). The labels f(1), · · · , f(m) identify the subsystem of interest,

while the remaining indexes f(m + 1), · · · , f(n) refers to the systems to be removed. The

probability distribution of the m-partite subsystem Xf(1)×· · ·×Xf(m) is defined accordingly

with probability masses

p(xf(1), . . . , xf(m)) =
∑

xf(m+1),...,xf(n)

p(x1, . . . , xn), (2.6)

for all outcomes (xf(1), . . . , xf(m)) of the joint system Xf(1) × · · · ×Xf(m).

The definition of marginalization for bipartite classical systems can be recovered from the

general definition in Eq. (2.6). For instance, let n = 2 and m = 1. Thus, we have Eq. (2.4)

defining f : {1, 2} → {1, 2} with the values f(1) = 1 and f(2) = 2. On the other hand,

defining the bijective function f : {1, 2} → {1, 2} with values f(1) = 2 and f(2) = 1, we

have Eq. (2.5).

2.2 Classical operations and Markov processes

Marginalization allow us to define classical channels, representing noisy operations on

classical systems. This is done through the definition of conditional probability distributions.

Consider the bipartite system X1 × X2 in the state p. The probability distribution of the

system X2 conditional on X1 is defined with conditional probability masses

p(x2|x1) = p(x1, x2)
p(x1) , (2.7)

for every outcome x1 in X1 with positive probability p(x1), and for each x2 in X2. The set

of outcomes with positive probability is denoted as the support of a random variable X, and

denoted as supp(X). The function p(X2|X1) : (x1, x2) ∈ supp(X1) × X2 7→ p(x2|x1) ∈ R

is called conditional probability distribution. The mapping p(X2|X1) represents a classical

noisy operation with input system X1 and output system X2.
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Conditional probability distributions can also be generalized to arbitrary n-partite sys-

tems X1 × · · · ×Xn. Let f : {1, . . . , n} → {1, . . . , n} be a bijective function. Now, consider

integers 1 ≤ r ≤ n and 1 ≤ s ≤ n such that r + s ≤ n. The probability distribution of

Xf(1) × · · · ×Xf(r) conditional on Xf(r+1) × · · · ×Xf(s) is defined by

p(Xf(1), . . . , Xf(r)|Xf(r+1), . . . , Xf(s)) = p(Xg(f(1)), . . . , Xg(f(r)), Xg(f(r+1)), . . . , Xg(f(s)))
p(Xf(r+1), . . . , Xf(s))

,

(2.8)

where g is a permutation of (f(j))sj=1 with ordering g(f(1)) ≤ · · · ≤ g(f(s)).

In general, classical processes X1 × · · · ×Xn can be described by conditional probability

distributions with the assistance of the formula

p(X1, . . . , Xn) = p(Xn|X1, . . . , Xn−1) · · · p(X3|X1, X2)p(X2|X1)p(X1). (2.9)

Here, the indexes in the process’ variables represent time instances. The above equation

easily follows from the definition of conditional probability distribution. In particular,

p(X1, . . . , Xt) = p(Xt|X1, . . . , Xt−1)p(X1, . . . , Xt−1), (2.10)

with 1 < t ≤ n.

X1 X2 X3 Xn−1 Xn

· · ·p(X1) p(X2|X1) p(X3|X2) p(Xn|Xn−1)

Figure 2.1: Diagrammatic reasoning for classical processes and Markov conditions.
A classical channel p(X2|X1) acting on a classical state p(X1) results in the classical state
p(X1, X2) = p(X2|X1)p(X1). This situation can be pictorially represented as follows. Clas-
sical channels are boxes with input and output systems represented by left and right wires,
respectively. Classical states are boxes with sole right wires. This emphasizes that states are
channels with trivial input systems, that is, input variables with single outcome. Through-
out this thesis we use dashed lines to denote classical states and channels. This makes clear
distinction with the diagrams for quantum processes, which are drawn with solid lines in the
following chapters. A Markov process X1 → · · · → Xn is given by the application of n − 1
classical channels on a classical state. That is supported by the joint probability distribution
of a Markov process in Eq. (2.14).
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This thesis deals with the properties of Markov processes. A classical process is called

Markov when the future is independent of the past conditionally on the present. For instance,

a tripartite classical system X1 ×X2 ×X3 is a Markov process if

p(X3|X1, X2) = p(X3|X2). (2.11)

On the same way, a four-partite system X1 × X2 × X3 × X4 is a Markov process if the

condition in Eq. (2.11) is fulfilled altogether with

p(X4|X1, X2, X3) = p(X4|X3). (2.12)

In general, discrete-time Markov processes are defined as classical systems X1× · · · ×Xn

satisfying

p(Xt|X1, · · · , Xt−1) = p(Xt|Xt−1), (2.13)

with 3 ≤ t ≤ n. The n − 2 equalities in Eq. (2.13) are referred to as Markov conditions. A

Markov process is denoted as X1 → X2 → · · · → Xn.

The Markov conditions imply the process considered is identified with the consecutive

action of local classical operations on an initial classical state. That is,

p(X1, · · · , Xn) = p(Xn|Xn−1) · · · p(X3|X2)p(X2|X1)p(X1) (2.14)

holds wheneverX1 → · · · → Xn. This follows directly from Eq. (2.9), and is diagrammatically

represented in Figure 2.1.

On the other hand, a process is non-Markov whenever it violates any condition in Eq. (2.13).

Equivalently, for a non-Markov process X1 × · · · ×Xn we have

p(X1, · · · , Xn) 6= p(Xn|Xn−1) · · · p(X3|X2)p(X2|X1)p(X1), (2.15)

since at least one Markov condition is not respected.

The goal of this study is to further characterize information constraints on Markov pro-

cesses, and thus, defining novel witnesses of non-Markov behaviour. We now move to consider
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a concrete example of classical non-Markov process.

X1 X2
p

X2 X1
p

Figure 2.2: Identical copy of classical systems. Two systems are identical copies when-
ever one is the output of the identity operation acting on the other.

Consider the initial bipartite classical system X1 × Y1, with binary subsystems X1, Y1 =

{0, 1}. Let the joint system be in the classical state

p(x1, x2) = δx1,x2

2 . (2.16)

The variables X1 and X2 are identical copies of each other, with uniform marginal distribu-

tions. That is, one is obtained by the action of a noiseless channel on the other. See Figure

2.2.

Now consider the classical bipartite channel

Ωη(x, y|a, b) =


1− η, if x = b and y = a

η
3 , otherwise

, (2.17)

with classical bits a, b, x, y = 0, 1. In Fig. 2.3 the classical probabilistic operation Ωη is

represented diagrammatically.

We define a bipartite classical process as follows. Let X2×Y2 be the output system for the

channel Ωη defined in Eq. (2.17), with input system X1×Y1 in the state defined in Eq. (2.16).

Then, feed the channel Ωη with the input system X2× Y2 to get the output system X3× Y3.

Finally, define X4 × Y4 as the output system of Ωη with input X3 × Y3. Therefore, the state
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0, 0

1, 0

0, 1

1, 1

0, 0

1, 0

0, 1

1, 1

Figure 2.3: Channel diagrams. The diagram represents the classical channel Ωη in
Eq. (2.17). In the left side we represent the outcomes the bipartite input variable, while
in the right side we represent the possible results of the bipartite output system. The lines
connecting the nodes represent the probability of the output conditional on the input. Here,
the red lines represent conditional probabilities with a value of 1−η, and blue lines represent
conditional probabilities with a value of η/3. Note that for each input outcome it follows
four lines summing up to unit, thus, defining a conditional probability distribution. Here,
the same holds for the output outcomes. Therefore, Ωη is said to be a symmetric classical
channel.

of the system X1 × Y1 × · · · ×X4 × Y4 is

p(X1, Y1, X2, Y2, X3, Y3, X4, Y4) =

Ωη(X4, Y4|X3, Y3)Ωη(X3, Y3|X2, Y2)Ωη(X2, Y2|X1, Y1)p(X1, Y1). (2.18)

Figure 2.4 presents a diagram representing the process in Eq. (2.18). The protocol de-

scribed results in the Markov process

(X1, Y1)→ (X2, Y2)→ (X3, Y3)→ (X4, Y4). (2.19)

Although the bipartite classical process×4
t=1Xt × Yt is Markov, the marginal process

×4
t=1Xt could potentially have non-trivial correlations between X4 and X1×X2, and between

X3 and X1. This would be provided by the non-trivial interaction with the variables×4
t=1 Yt.

Would we have X1 → X2 → X3 → X4? We show in the following that the process×4
t=1Xt

is non-Markov for most of the values η.
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X1 X2 X3 X3

Y1 Y2 Y3 Y4

p Ωη Ωη Ωη

Figure 2.4: Bipartite Markov Process. A bipartite Markov process is defined with an
initial bipartite classical state p(X1, Y1) going through evolution given by Ω.

In order to check if the process is Markov we need to check all the Markov conditions.

Thus, we need to have access to the joint probability distribution p(X1, X2, X3, X4). For

a four-time-step process we have to check Eqs. (2.11) and (2.12). Figure 2.5 compares the

conditional probability distributions p(X3|X1, X2) and p(X3|X2). Figure 2.6 compares the

conditional probability distributions p(X4|X1, X2, X3) and p(X4|X3).

The conditions (2.11) and (2.12) hold for X1 ×X2 ×X3 ×X4 only when η = 0.75. This

can be checked visualizing the plots in Figs. 2.5 and 2.6. Therefore, for any other value of η

the process is regarded as non-Markov.

In this example the Markov condition (2.11) solely was sufficient for characterizing the

process as non-Markovian. Thus, is it possible to be sure a process is non-Markov without

the knowledge of the full joint probability distribution? In the following chapters we show the

existence of relaxed conditions witnessing non-Markovianity with the knowledge of pair-wise

probability distributions p(Xi, Xj), with 1 ≤ i < j ≤ 4.

16



p(0|0,0)

p(0|0)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

η

p(1|0,0)

p(1|0)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

η

p(0|0,1)

p(0|1)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

η

p(1|0,1)

p(1|1)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

η

p(0|1,0)

p(0|0)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

η

p(1|1,0)

p(1|0)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

η

p(0|1,1)

p(0|1)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

η

p(1|1,1)

p(1|1)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

η

Figure 2.5: Violation of Markov condition in Eq. (2.11). The equality for conditional
probability masses p(x3|x1, x2) = p(x3|x2) do not hold for most of the values of η.
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Figure 2.6: Violation of Markov condition in Eq. (2.12) (Figure continues on next
page). The equality for conditional probability masses p(x4|x1, x2, x3) = p(x4|x3) do not
hold for most of the values of η.
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Figure 2.6: Violation of Markov condition in Eq. (2.12). The equality for conditional
probability masses p(x4|x1, x2, x3) = p(x4|x3) do not hold for most of the values of η.
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Chapter 3

Data processing inequalities

Markovianity implies constraints on the statistical dependence of variables in a process.

In chapter 2 we have considered a concrete example of four-time-step non-Markov process.

We have also certified its non-Markovianity by directly checking the violation of the Markov

conditions. In doing so we made use of the state of the full probability distribution of the pro-

cess. That was necessary to compute the conditional probability distributions p(X3|X1, X2)

and p(X4|X1, X2, X3) in order to compare them with p(X3|X2) and p(X4|X3), respectively.

In that particular example, the condition p(X3|X1, X2) = p(X3|X2) was enough to witness

non-Markovianity. So the marginal probability distribution of the variables X1 × X2 × X3

was sufficient for invalidating the condition X1 → X2 → X3 → X4. It suggests that we

could systematically witness non-Markovianity even without the knowledge of the full joint

distribution of process, that is, p(X1, X2, X3, X4).

In fact, we may witness non-Markovianity with the knowledge of the distributions of

bipartite subsystems of the process only. This method is provided by information measures,

which we define now.

Here, the central quantity is the mutual information of classical systems X and Y defined

as [4, 5]

I(X : Y ) = H(X) +H(Y )−H(X, Y ), (3.1)



with classical entropy [4, 5]

H(Z) = −
∑

p(z)>0
p(z) log2 p(z). (3.2)

The Markov conditions clearly impose constraints on the information measures of the

random variables of a stochastic process. Particularly, it does impose constraints on the

mutual information of pairs of random variables: the data processing inequalities.

3.1 Three-time-step classical Markov processes

The elementary data processing inequalities emerges from three-time-step Markov pro-

cesses. Every process X1 → X2 → X3 satisfies [4, 5]

I(X1 : X2) ≥ I(X1 : X3) (3.3)

and

I(X2 : X3) ≥ I(X1 : X3). (3.4)

The conditions in Eqs. (3.3) and (3.4) are called data processing inequalities for the

following reason. Consider the the data generated by a random source represented by the

classical system X1. Suppose the input variable X1 is then transformed into the variable

X2 by some communication channel p(X2|X1). The input and output variables are not

perfectly correlated whenever p is a noisy operation. Thus, the message is corrupted through

the process. One could try to recover the original message by acting locally on the output

terminal. Equation (3.3) asserts that it is impossible. A similar interpretation holds for

Eq. (3.4), but the transformation p(X2|X1) is regarded now as a noisy pre-processing of

data, and thus possibly decreasing correlations between the input and output terminals of

a communication system. Figure 3.1 introduces diagrams for the information inequalities

considered here.

In order to prove that Eqs. (3.3) and (3.4) hold for any three-time-step process X1 →
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X1 X2 X3

X1 X2 X3

Figure 3.1: Information inequalities. The wires connecting two systems through dashed
lines refers to their mutual information. The diagrams follow the convention that the mutual
information terms defined by the bottom links cannot be greater than the top ones. Therefore,
the top panel represents Eq. (3.3), while the bottom panel represents Eq. (3.4).

X2 → X3, consider the strong subadditivity of classical entropy [4, 5]

H(X1, X2, X3) +H(X3) ≤ H(X1, X3) +H(X2, X3) (3.5)

and

H(X1, X2, X3) +H(X1) ≤ H(X1, X2) +H(X1, X3). (3.6)

The conditions above follow from the non-negativity of the conditional mutual information

defined as I(X : Y |Z) = H(X,Z) +H(Y, Z)−H(X, Y, Z)−H(Z) [4, 5]. Then, by using the

Markov condition we have

H(X1, X2, X3) = H(X1, X2) +H(X2, X3)−H(X2). (3.7)

Finally, use Eq. (3.7) in Eqs. (3.5) and (3.6) in order to get the desired data processing

inequalities.
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3.2 Four-time-step classical Markov processes

Similarly, four-partite Markov processes satisfy data processing inequalities. But now

the number of constraints are considerably larger. For any four-time-step Markov process

X1 → X2 → X3 → X4 it holds that [4, 5]

I(X1 : X2) ≥ I(X1 : X3), (3.8)

I(X2 : X3) ≥ I(X2 : X4), (3.9)

I(X1 : X3) ≥ I(X1 : X4), (3.10)

I(X1 : X2) ≥ I(X1 : X4), (3.11)

I(X2 : X3) ≥ I(X1 : X3), (3.12)

I(X2 : X4) ≥ I(X1 : X4), (3.13)

I(X3 : X4) ≥ I(X2 : X4), (3.14)

I(X3 : X4) ≥ I(X1 : X4), (3.15)

I(X2 : X3) ≥ I(X1 : X4). (3.16)

The data processing inequalities for four-time-step Markov processes follow from the

elementary data processing conditions for three-time-step Markov processes.

For instance, Eqs. (3.8)-(3.11) have the same form of Eq. (3.3), thus, representing the

impossibility of fixing the communication of a given channel by post-processing with a noisy

operation. In particular, Eq. (3.11) goes further, stating this constraint for post-processing

the output terminal twice. On the other hand, Eqs. (3.12)-(3.15) are of the same type of

Eq. (3.4), and furthermore, have the same interpretation. Eq. (3.15) considers pre-processing

the input of a communication channel twice.

The validity of Eqs. (3.8)-(3.15) follows since marginal processes preserve Markovianity

[5]. In the case considered, we have that X1 → X2 → X3 → X4 implies X1 → X2 → X3,

X2 → X3 → X4, X1 → X3 → X4 and X1 → X2 → X4.

The remaining condition in Eq. (3.16) is not of the elementary type. Nevertheless, it is a

valid data processing condition obtained adding Eqs. (3.9) and (3.13). Moreover, it represents

a more involved condition directly related to the proof of the converse part of the channel
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coding theorem: it is impossible to fix the noise introduced by a communication channel with

joint pre-and-post-processing noisy operations.

3.3 General classical Markov processes

The pattern in Eqs. (3.8)-(3.16) can be generalized for Markov processes with arbitrary

number of variables. That is, for any n-time-step Markov process X1 → X2 → · · · → Xn it

holds that

I(Xi : Xj) ≤ I(Xr : Xs), (3.17)

with 1 ≤ i ≤ r < s ≤ j ≤ n.

Data processing inequalities hold for any Markov process. Hence, one may assure a process

is non-Markov by witnessing their violation. As expected a non-Markov process may violate

those inequalities, as it necessarily violates the conditions under which they have been derived

from. It is interesting to note, though, that a non-Markov process may satisfy all the data

processing inequalities. We provide an example of such behaviour in the next chapter. That

is because the data processing conditions are only necessary conditions for Markovianity.

The data processing inequalities are not the only witnesses of non-Markovianity. In the next

chapter we address different necessary conditions for Markov processes.
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Chapter 4

Markov monogamy inequalities

In chapter 3 we have gone through the formal derivation of data processing inequalities.

A key feature of them is their dependence on two-time-step correlation functions only. It

has been claimed there that the data processing conditions provide a suitable way to certify

the non-Markovianity of processes. Here, we show how this is done by considering concrete

examples. But we go further, considering the existence of non-trivial information inequalities

witnessing non-Markov behaviour beyond what is possible with data processing inequalities.

We discuss here the definition of the Markov monogamy inequalities holding for classical

processes. Moreover, Markov monogamy inequalities are the central result present in this

thesis.

This chapter is organized as follows. We first consider the most basic Markov monogamy

inequality arising for four-time-step processes. We also show how all the classical information

inequalities derived so far can be used to witness non-Markovianity in particular examples.

Then, we move to the definition of Markov monogamy inequalities of six- and eight-time-

step classical Markov processes. Finally, we use this results to support our conjecture on the

general form of Markov monogamy conditions for arbitrarily long classical Markov chains.

4.1 Four-time-step classical Markov processes

Markov monogamy are information inequalities that every Markov process satisfy. To

this matter, data processing and Markov monogamy inequalities can be considered asser-



tions of the same type, that is, necessary conditions on Markovianity. The simplest Markov

monogamy condition emerges from four-time-step Markov processes, and is defined as follows.

For every four-time-step Markov process X1 → X2 → X3 → X4, it holds that [4, 2]

I(X1 : X4) + I(X2 : X3) ≥ I(X1 : X3) + I(X2 : X4). (4.1)

The Markov monogamy inequality in Eq. (4.1) appeared first in Ref. [4]. The authors in

Ref. [2] derived it independently and also considered several applications. For instance, we

considered how Eq. (4.1) connects to causal modelling, and how it can be used to witness

non-Markov behaviour. The general form of Markov monogamy inequalities is novel result

reported in [1].

In order to prove that Eq. (4.1) holds for every four-time-step Markov process, we need

to add the strong subadditivity inequalities

I(X2 : X3|X1, X4) ≥ 0, (4.2)

I(X1 : X4|X2) ≥ 0, (4.3)

I(X1 : X4|X3) ≥ 0, (4.4)

and then, to use the Markov conditions

H(X4|X1, X2, X3) = H(X4|X3), (4.5)

H(X3|X1, X2) = H(X3|X2). (4.6)

Markov monogamy is not equivalent to any data processing inequality, nor any combina-

tion of them. That is, we have that I(X1 : X3) ≥ I(X1 : X4) and I(X2 : X3) ≥ I(X2 : X4),

or I(X1 : X3) ≥ I(X2 : X3) and I(X2 : X4) ≥ I(X1 : X4), are the only combinations with

same mutual information terms as in Eq. (4.1). Nevertheless, none of those pairs result in a

Markov monogamy inequality when added together.

For the case of four-time-step Markov processes X1 → X2 → X3 → X4 we have a total

of nine data processing conditions in Eqs. (3.8)-(3.16). Nevertheless, not all of them are

independent. That is, it is possible to combine two data processing inequalities to define a
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new one. For instance, the data processing inequality I(X1 : X2) ≥ I(X1 : X4) is obtained

by adding

I(X1 : X2) ≥ I(X1 : X3), and (4.7)

I(X1 : X3) ≥ I(X1 : X4). (4.8)

Similarly, the information inequality I(X2 : X3) ≥ I(X1 : X4) is obtained with

I(X2 : X3) ≥ I(X2 : X4), and (4.9)

I(X2 : X4) ≥ I(X1 : X4). (4.10)

Finally, we have that I(X2 : X3) ≥ I(X1 : X4) follows from the inequalities

I(X3 : X4) ≥ I(X2 : X4), and (4.11)

I(X2 : X4) ≥ I(X1 : X4). (4.12)

Therefore, the data processing conditions for four-time-step Markov processes can be

reduced to the following six inequalities

I(X1 : X2) ≥ I(X1 : X3), (4.13)

I(X1 : X3) ≥ I(X1 : X4), (4.14)

I(X2 : X3) ≥ I(X1 : X3), (4.15)

I(X2 : X3) ≥ I(X2 : X4), (4.16)

I(X3 : X4) ≥ I(X2 : X4), (4.17)

I(X2 : X4) ≥ I(X1 : X4). (4.18)

The Markov monogamy inequality in Eq. (4.1) can be used to further reduce the number

of independent information inequalities for four-time-step Markov processes. The six infor-

mation inequalities above can be achieved from the Markov monogamy and the four data
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processing inequalities

I(X1 : X4) + I(X2 : X3) ≥ I(X1 : X3) + I(X2 : X4), (4.19)

I(X1 : X2) ≥ I(X1 : X3), (4.20)

I(X1 : X3) ≥ I(X1 : X4), (4.21)

I(X3 : X4) ≥ I(X2 : X4), (4.22)

I(X2 : X4) ≥ I(X1 : X4). (4.23)

The information inequalities in Eqs. (4.20)-(4.23) are of the type of the elementary data

processing inequalities for three-time-step Markov processes. Therefore, this reasoning pro-

vides a different route to prove the nine data processing conditions for four-time-step Markov

processes.

4.2 Witnessing non-Markovianity with information in-

equalities

The information inequalities developed so far are necessary conditions for classical Markov

processes. That is, classical processes for which the Markov conditions hold also satisfy data

processing and Markov monogamy inequalities. We address here the method of witnessing

non-Markovianity with information inequalities.

For every four-time-step process X1 ×X2 ×X3 ×X4 we define real-valued functions

DP1 := I(X1 : X2)− I(X1 : X3), (4.24)

DP2 := I(X1 : X3)− I(X1 : X4), (4.25)

DP3 := I(X2 : X3)− I(X1 : X3), (4.26)

DP4 := I(X2 : X3)− I(X2 : X4), (4.27)

DP5 := I(X3 : X4)− I(X2 : X4), (4.28)

DP6 := I(X2 : X4)− I(X1 : X4), (4.29)

M4 := I(X1 : X4) + I(X2 : X3)− I(X1 : X3)− I(X2 : X4). (4.30)
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The quantities above are non-negative for every Markov process X1 → X2 → X3 → X4.

Thus, in case any of the quantities above assume a negative value for a process X1 ×X2 ×

X3×X4 we are sure it is not in agreement with at least one Markov condition. Furthermore,

the quantities DPi (i ∈ {1, . . . , 6}) and M4 are called witnesses of non-Markovianity. Note a

non-Markov process does not necessarily imply a negative value for any of the quantities in

Eqs. (4.24)-(4.30). Therefore, a non-negative value for DP1, . . . ,DP6 and M4 is not conclusive

evidence a process is Markovian.1

We start considering the non-Markov process defined in chapter 2. There, we have studied

a four-time-step bipartite Markov process X1×Y1 → X2×Y2 → X3×Y3 → X4×Y4. Its full

probability distribution was defined by a bipartite classical channel Ωη acting successively on

the initial state of X1 × Y1, and depending upon the parameter 0 ≤ η ≤ 1. The marginal

process X1 ×X2 ×X3 ×X4 was also shown to be non-Markov for most of the values of the

variable η. This was done explicitly by checking the Markov conditions for four-time-step

processes.

Now, we check how information inequalities can be useful witnessing non-Markov pro-

cesses in this example. Figure 4.1 shows the plot of DP1, . . . ,DP6 and M4 as a function of the

parameter η. The quantities DP5 and M4 are identical for every value of η in this example,

and moreover, are the only quantities witnessing non-Markovianity. Note that for η = 0.75

all the witnesses are non-negative. This is already expected to happen as the process is

Markovian for this situation.

The next sections consider the Markov monogamy inequalities arising from X1 → · · · →

Xn, with n = 6, 8. In what follows it is convenient to define the Markov entropy

HMarkov(X1, · · · , Xn) :=
n−1∑
i=1

H(Xi, Xi+1)−
n−2∑
i=2

H(Xi). (4.31)

The quantity HMarkov is defined to have the same form as the joint entropy of a Markov

process [2]. That is, we haveH(X1, · · · , Xn) = HMarkov(X1, · · · , Xn) for every Markov process

X1 → · · · → Xn. Note that non-Markov chains can have joint entropy with a different form.

1In fact, the data processing inequality in Eq. (3.3) can be modified to be a necessary and sufficient
condition on three-time-step Markov processes. This is done by considering the min-entropy instead of the
classical entropy [34].
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Figure 4.1: Witnessing non-Markovianity with information inequalities. The non-
Markov process defined in chapter 2 implies in the violation of M4 and DP5. All the other
information inequalities are obsolete for every value of η.

4.3 Six-time-step classical Markov processes

Now, we consider the Markov monogamy inequalities for six-time-step Markov processes.

For this sake, let X1 → · · · → X6 be an arbitrary Markov process. Then, it follows that [2, 1]

I(X1 : X6) + I(X2 : X5) + I(X3 : X4) ≥ I(X1 : X4) + I(X2 : X6) + I(X3 : X5), (4.32)

I(X1 : X6) + I(X2 : X5) + I(X3 : X4) ≥ I(X1 : X5) + I(X2 : X4) + I(X3 : X6). (4.33)

The validity of the information inequalities above can be checked with the help of a

program such as ITIP [35]. Nevertheless, we go through the analytical derivation of the first

of them. We follow the proof presented in Ref. [2]. This is done so the reader can have

an idea of how this information inequalities are proved. First, we add the following strong

subadditivity inequalities

I(X3 : X4|X1, X2, X5, X6) ≥ 0, (4.34)

I(X1 : X3|X2, X5, X6) ≥ 0, (4.35)

I(X4 : X6|X1, X2, X5) ≥ 0, (4.36)
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I(X3 : X6|X2, X5) ≥ 0, (4.37)

I(X2 : X4|X1, X5) ≥ 0, (4.38)

I(X2 : X5|X1, X6) ≥ 0, (4.39)

I(X1 : X6|X5) ≥ 0, (4.40)

I(X1 : X5|X4) ≥ 0, (4.41)

I(X2 : X5|X3) ≥ 0, (4.42)

I(X1 : X6|X2) ≥ 0, (4.43)

in order to get

HMarkov(X1, . . . , X6)−H(X1, . . . , X6) ≥

I(X1 : X4) + I(X2 : X6) + I(X3 : X5)

− I(X1 : X6)− I(X2 : X5)− I(X3 : X4). (4.44)

Then, the use of the Markov conditions concludes the proof. In general, the proof of

Markov monogamy inequalities follows similar lines. We simply add strong subadditivity

inequalities, and then we use the Markov conditions. The challenge here is to find the

appropriate elementary conditions summing up to the desired information inequality. As we

are going to see in the next sections, the number of strong subadditivity conditions necessary

to prove Markov monogamy inequalities increases with the number of variables in the process.

4.4 Eight-time-step classical Markov processes

We move to define the Markov monogamy inequalities for eight-time-step Markov process.

Thus, let X1 → · · · → X8 be any Markov process. Then, it holds that [2, 1]

I(X1 : X8) + I(X2 : X7) + I(X3 : X6) + I(X4 : X5) ≥

I(X1 : X5) + I(X2 : X8) + I(X3 : X7) + I(X4 : X6), (4.45)
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I(X1 : X8) + I(X2 : X7) + I(X3 : X6) + I(X4 : X5) ≥

I(X1 : X7) + I(X2 : X5) + I(X3 : X8) + I(X4 : X6), (4.46)

I(X1 : X8) + I(X2 : X7) + I(X3 : X6) + I(X4 : X5) ≥

I(X1 : X6) + I(X2 : X8) + I(X3 : X5) + I(X4 : X7), (4.47)

I(X1 : X8) + I(X2 : X7) + I(X3 : X6) + I(X4 : X5) ≥

I(X1 : X5) + I(X2 : X6) + I(X3 : X8) + I(X4 : X7), (4.48)

I(X1 : X8) + I(X2 : X7) + I(X3 : X6) + I(X4 : X5) ≥

I(X1 : X7) + I(X2 : X6) + I(X3 : X5) + I(X4 : X8), (4.49)

I(X1 : X8) + I(X2 : X7) + I(X3 : X6) + I(X4 : X5) ≥

I(X1 : X6) + I(X2 : X5) + I(X3 : X7) + I(X4 : X8), (4.50)

I(X1 : X8) + I(X2 : X7) + I(X3 : X6) + I(X4 : X5) ≥

I(X1 : X5) + I(X2 : X6) + I(X3 : X7) + I(X4 : X8). (4.51)

Here, we provide a proof of the Markov monogamy condition in shown in Eq. (4.45).

First, we add the strong subadditivity inequalities

I(X4 : X5|X1, X2, X3, X6, X7, X8) ≥ 0, (4.52)

I(X1 : X4|X2, X3, X6, X7, X8) ≥ 0, (4.53)

I(X5 : X8|X1, X2, X3, X6, X7) ≥ 0, (4.54)

I(X4 : X8|X2, X3, X6, X7) ≥ 0, (4.55)
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I(X3 : X8|X1, X2, X6, X7) ≥ 0, (4.56)

I(X1 : X3|X2, X5, X6, X7) ≥ 0, (4.57)

I(X2 : X5|X1, X6, X7) ≥ 0, (4.58)

I(X3 : X5|X2, X6, X7) ≥ 0, (4.59)

I(X2 : X4|X3, X6, X7) ≥ 0, (4.60)

I(X2 : X7|X1, X6, X8) ≥ 0, (4.61)

I(X1 : X7|X5, X6) ≥ 0, (4.62)

I(X3 : X6|X2, X7) ≥ 0, (4.63)

I(X4 : X7|X3, X6) ≥ 0, (4.64)

I(X2 : X6|X1, X8) ≥ 0, (4.65)

I(X1 : X8|X6, X7) ≥ 0, (4.66)

I(X1 : X8|X2) ≥ 0, (4.67)

I(X2 : X7|X3) ≥ 0, (4.68)

I(X3 : X6|X4) ≥ 0, (4.69)

I(X1 : X6|X5) ≥ 0, (4.70)

I(X5 : X7|X6) ≥ 0, (4.71)

I(X6 : X8|X7) ≥ 0, (4.72)

to obtain

HMarkov(X1, . . . , X8)−H(X1 . . . , X8) ≥

I(X1 : X5) + I(X2 : X8) + I(X3 : X7) + I(X4 : X6)

− I(X1 : X8)− I(X2 : X7)− I(X3 : X6)− I(X4 : X5). (4.73)

Again, the use of the Markov conditions concludes the proof.
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4.5 Conjecture on classical Markov monogamy inequal-

ities

Now, we make a conjecture on the general form of Markov monogamy inequalities. This

is supported by the pattern appearing in the information inequalities considered so far. For

that, define an arbitrary classical Markov process

Xm → · · · → X1 → Y1 → · · · → Ym, (4.74)

with integer m ≥ 2.

The systems X1 and Y1 are respectively interpreted as input and output variables of a

classical channel. Therefore, the systems X2 and Y2 are pre- and post-processed variables

of the given classical channel. This interpretation goes further identifying the systems Xt

and Yt, with 1 < t ≤ m, as representations of the pre-and-post-processing of input- and

output-variables t− 1 times.

From these definitions, we make the following conjecture. For any process of the form in

Eq. (4.74), it holds that[1]

m∑
i=1

I(Xi : Yi) ≥
m∑
i=1

I(Xi : Yf(i)), (4.75)

for any bijective function f : {1, . . . ,m} → {1, . . . ,m}.

The Markov monogamy conditions considered so far are particular instances of the above

inequality. For instance, consider the case of four-time-step classical Markov processes X2 →

X1 → Y1 → Y2. Then, define a bijective function f : {1, 2} → {1, 2} with f(1) = 2 and

f(2) = 1. The conjecture above takes the form

I(X1 : Y1) + I(X2 : Y2) ≥ I(X1 : Y2) + I(X2 : Y1). (4.76)

The information inequality above is equivalent to the Markov monogamy in Eq. (4.19),

which we know to be valid for any four-time-step Markov process. The conjecture also specify

the validity of Eq. (4.75) for four-time-step Markov processes with respect to the bijective
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function g : {1, 2} → {1, 2} for which g(1) = 1 and g(2) = 2. Nevertheless, this defines a

trivially valid information inequality

I(X1 : Y1) + I(X2 : Y2) ≥ I(X1 : Y1) + I(X2 : Y2) (4.77)

Furthermore, we have that (4.76) is the only non-trivial Markov monogamy inequality for

four-time-step-processes. We invite the interested reader to check that the only non-trivial

Markov monogamy inequalities for six-time step processes are represented in Eqs. (4.32) and

(4.32), and for eight-time-step processes are described in Eqs. (4.45)-(4.51).

Here, we do not provide a proof for the general form of Markov monogamy in Eq. (4.75).

This remains as an open problem. Nevertheless, we have proved that several particular

cases do hold. Namely, the information inequalities in Eqs. (4.1), (4.32) and (4.45) have

been introduced here with detailed derivation. In order to close the discussion about the

conjecture on classical Markov monogamy inequalities, we consider a last example.

Define a bijective function f : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} assigning

f(1) = 2, (4.78)

f(2) = 3, (4.79)

f(3) = 4, (4.80)

f(4) = 5, (4.81)

f(5) = 1. (4.82)

Thus, our conjecture states that the Markov monogamy inequality

I(X1 : Y1) + I(X2 : Y2) + I(X3 : Y3) + I(X4 : Y4) + I(X5 : Y5) ≥

I(X1 : Y2) + I(X2 : Y3) + I(X3 : Y4) + I(X4 : Y5) + I(X5 : Y1) (4.83)

holds for any ten-time-step Markov process X5 → · · · → X1 → Y1 → · · · → Y5.

Writing the process X5 → · · · → X1 → Y1 → · · · → Y5 as X1 → · · · → X10, the condition
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in Eq. (4.83) becomes

I(X1 : X10) + I(X2 : X9) + I(X3 : X8) + I(X4 : X7) + I(X5 : X6) ≥

I(X1, X6) + I(X2, X10) + I(X3, X9) + I(X4, X8) + I(X5, X7). (4.84)

We now prove the information inequality above by adding the following strong subaddi-

tivity inequalities [2]

I(X5 : X6|X1, X2, X3, X4, X7, X8, X9, X10) ≥ 0, (4.85)

I(X1 : X5|X2, X3, X4, X7, X8, X9, X10) ≥ 0, (4.86)

I(X6 : X10|X1, X2, X3, X4, X7, X8, X9) ≥ 0, (4.87)

I(X5 : X10|X2, X3, X4, X7, X8, X9) ≥ 0, (4.88)

I(X1 : X4|X2, X3, X6, X7, X8, X9) ≥ 0, (4.89)

I(X4 : X10|X1, X2, X3, X7, X8, X9) ≥ 0, (4.90)

I(X2 : X5|X3, X4, X7, X8, X9) ≥ 0, (4.91)

I(X2 : X6|X1, X3, X7, X8, X9) ≥ 0, (4.92)

I(X4 : X6|X2, X3, X7, X8, X9) ≥ 0, (4.93)

I(X2 : X7|X1, X3, X8, X9, X10) ≥ 0, (4.94)

I(X5 : X9|X3, X4, X7, X8) ≥ 0, (4.95)

I(X3 : X6|X1, X7, X8, X9) ≥ 0, (4.96)

I(X2 : X4|X3, X7, X8, X9) ≥ 0, (4.97)

I(X2 : X8|X1, X3, X9, X10) ≥ 0, (4.98)

I(X3 : X8|X1, X7, X9, X10) ≥ 0, (4.99)

I(X3 : X5|X4, X7, X8) ≥ 0, (4.100)

I(X6 : X8|X1, X7, X9) ≥ 0, (4.101)

I(X4 : X7|X3, X8, X9) ≥ 0, (4.102)

I(X1 : X3|X2, X9, X10) ≥ 0, (4.103)

I(X3 : X7|X1, X9, X10) ≥ 0, (4.104)
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I(X1 : X8|X7, X9, X10) ≥ 0, (4.105)

I(X5 : X8|X4, X7) ≥ 0, (4.106)

I(X6 : X9|X1, X7) ≥ 0, (4.107)

I(X4 : X9|X3, X8) ≥ 0, (4.108)

I(X2 : X9|X1, X10) ≥ 0, (4.109)

I(X3 : X10|X2, X9) ≥ 0, (4.110)

I(X1 : X9|X7, X10) ≥ 0, (4.111)

I(X7 : X9|X8, X10) ≥ 0, (4.112)

I(X4 : X7|X5) ≥ 0, (4.113)

I(X1 : X7|X6) ≥ 0, (4.114)

I(X3 : X8|X4) ≥ 0, (4.115)

I(X1 : X10|X2) ≥ 0, (4.116)

I(X2 : X9|X3) ≥ 0, (4.117)

I(X1 : X10|X7) ≥ 0, (4.118)

I(X7 : X10|X8) ≥ 0, (4.119)

I(X8 : X10|X9) ≥ 0, (4.120)

we have the inequality

HMarkov(X1, . . . , X10)−H(X1, . . . , X10) ≥

I(X1 : X6) + I(X2 : X10) + I(X3 : X9) + I(X4 : X8) + I(X5 : X7)

− I(X1 : X10)− I(X2 : X9)− I(X3 : X8)− I(X4 : X7)− I(X5 : X6). (4.121)

Then, using the Markov conditions completes the proof.

Note that we have proved that the Markov monogamy inequalities of the particular type

m∑
i=1

I(Xi : X2m+1−i) ≥ I(X1 : Xm+1) +
m∑
i=2

I(Xi : X2m+2−i), (4.122)
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hold for every Markov process X1 → · · · → X2m, with m = 2, 3, 4, 5. That is, we have proved

that the conjecture in Eq. (4.75) holds for the bijective functions f : {1, . . . ,m} → {1, . . . ,m}

for which

f(i) = (i+ 1) mod m, (4.123)

with m = 2, 3, 4, 5.

The remaining Markov monogamy inequalities for different bijective functions f can be

quickly tested to be valid with numerical calculations provided by packages such as the one

described in Ref. [35].
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Part II

Quantum information inequalities
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Chapter 5

Quantum processes

In chapter 2 we have considered classical processes. The state of a classical system was

defined as a probability distribution, and a classical channel as a conditional probability

distribution. In turn, a classical process was represented by a joint probability distribution

of several classical systems, and thus interpreted as physical quantities observed at different

instances of time.

Importantly, classical processes are obtained by the sequential action of classical channels

on the joint past systems (cf. Eq. (2.9)). Here, we focus our study on the particular class

of Markov processes, represented as the action of local classical operations on single systems

only (cf. Eq. (2.14)).

Moreover, Markov processes are the very description of communication systems. Thus it

is crucial to develop and to understand the operational meaning of information inequalities.

That enforces the limits on what is possible under this model. For instance, one possibility

are the data processing inequalities. We have addressed the first part of the problem and

defined novel information inequalities, the Markov monogamy inequalities. In addition, we

have considered how information inequalities can be used to witness non-Markov behaviour

from a practical perspective.

It is of current understanding that classical probabilistic processes are not enough to

predict all the phenomena present in modern physical sciences. For this reason we need

the framework provided by quantum mechanics. Now, we go through a brief description of

quantum processes necessary for the subsequent chapters. The goal here is twofold. Firstly,



we set up a precise terminology and notation used in the text to follow. Secondly, in doing

so we introduce a more general audience to the basic elements and results necessary to

understand the next chapters. So this is done without much physical motivation, although

the interested reader is referred to the standard textbook in Ref. [36]. Much of the content

presented in this chapter can be found in greater detail and with complete proofs in standard

references in quantum information theory [37, 38, 39, 40, 41].

5.1 Quantum systems

To each quantum system S it is associated a Hilbert space. We use the same symbol

to denote interchangeably a quantum system and its associated Hilbert space. Here, we

only consider quantum systems with finite-dimensional spaces. So the concept of a Hilbert

space is reduced to finite-dimensional complex vector spaces equipped with an inner product.

Furthermore, all the mathematical tools necessary to understand the results presented here

coincide with the ones from basic linear algebra, which can be found in Refs. [42, 43, 44, 45].

The state of a quantum system S is a linear operator ρ : S → S for which holds the

conditions

ρ ≥ 0, (5.1)

tr[ρ] = 1. (5.2)

The set of all linear operators on S is denoted as L(S). The collection of quantum states

of S is then a subset of L(S). We say the state of a quantum system S is pure whenever

there is a unit vector |ψ〉 such that ρ = ψ := |ψ〉 〈ψ|. Otherwise, the quantum state is called

mixed.

Let R and S be quantum systems. The Hilbert space of the compound quantum system

of R and S is given by the tensor product R ⊗ S. Every quantum system S in the state ρ

can be extended to a bipartite system R⊗S in a pure state ψ with respect to some reference

system R. The state ψ is called a purification of ρ, and R the purification system of S. That

is, for each quantum state ρ ∈ L(S) there is a pure bipartite quantum state ψ ∈ L(R⊗S) for
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which trR[ψ] = ρ [38]. The purification of a quantum system is not unique. Note this result

becomes trivial when ρ is already pure. In such case we can take the trivial one-dimensional

system as purification system.

5.2 Quantum operations

Now, quantum channels representing the transformation of quantum systems are de-

scribed by a linear completely positive and trace preserving map. That is, the physical

transformation of a quantum system S1 into a quantum system S2 is defined as a linear map

Λ : L(S1)→ L(S2) for which

idR ⊗ Λ ≥ 0 (5.3)

holds for every reference system R, and

trS2 ◦Λ = trS1 . (5.4)

Every quantum channel has a Kraus decomposition [38]. That is, to each quantum channel

Λ : L(S1)→ L(S2) there is a collection of linear operators Lk : S1 → S2 for which

Λ(ρ) =
∑
k

LkρL
†
k (5.5)

holds for every input operator ρ in L(S1). The Kraus decomposition of a quantum channel is

not unique. Nevertheless, the number of Kraus operators may be made to be no larger than

dim(S1) dim(S2).

Kraus decomposition is not the only representation of quantum channels. Important to

the developments in this study is the Stinespring dilation representation. To each quantum

channel Λ : L(S1)→ L(S2) it is associated a unitary linear operator U : S1 ⊗ E1 → S2 ⊗ E2

and a pure state ϕ ∈ L(E1) such that

Λ(ρ) = trE2 [U(ρ⊗ ϕ)U †], (5.6)

for each input operator ρ in L(S1). The quantum systems E1 and E2 are called input and
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output environmental systems of the channel Λ, respectively.

In this way, we can identify the action of a noisy channel Λ in a state ρ as a global

system-environment unitary evolution of a separable bipartite input state ρ ⊗ ϕ given by

U(•) = U • U †, and then followed by discarding the environment system E2. Therefore, this

is also called a unitary representation or a dilation of a quantum channel. Once again, the

unitary representation of a given channel is not unique.

Now we have all the basic elements we need in order to define quantum processes, and

in particular quantum Markov processes. This will be a crucial step towards the setting of

quantum information inequalities. Nevertheless, we consider a last example before we move

to their proper definition. Here, we study the case of a non-Markov classical process arising

from a quantum process.

5.3 Quantum measurements

The way to extract a classical system X out of a quantum system S is by performing

a measurement. A quantum measurement is defined by assigning to each possible outcome

x ∈ X a measurement operator Mx : S → S. Measurement operators are expected to respect

the normalization condition ∑
x

M †
xMx = 1S. (5.7)

Here, the set of outcomes X = {x} define a classical system in the state with probability

masses

p(x) = tr[Mx(ρ)]. (5.8)

where the measurement maps Mx : L(S) → L(S) are defined as Mx(ρ) = MxρM
†
x, for every

ρ ∈ L(S). Therefore, the measurements are defined with linear completely positive maps Mx.

The normalization condition (5.7) implies that the sum of the measurement maps ∑
x∈X Mx

is also a trace-preserving quantum operation.

The post-measurement quantum state of S given the outcome x was observed is given by

ρx = Mx(ρ)
p(x) . (5.9)
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The quantum measurement process defines a single-time-step classical process X with

state p(X). Now, we show how consecutive quantum measurements gives rise to a classical

process. We consider the presentation in Ref. [40]. Suppose in the following we are given

with a quantum system S in the quantum state ρ.

A classical system X1 is defined in the state p(x1) = tr[Ax1(ρ)] by a collection of quan-

tum measurement maps {Ax1 : x1 ∈ X1}. Provided the classical system X1 occurred in the

particular outcome x1, we know for sure that the quantum state of the system S after the

measurement process is given by

ρx1 = Ax1(ρ)
p(x1) . (5.10)

Suppose also that after a given outcome x1 occurred, a subsequent quantum measurement

is performed on the system S. This process defines a second classical system X2 conditional

on the value x1 of X1. Let the second measurement process be described by measurement

maps Bx2 with x2 ∈ X2. Note that the maps Bx2 are not necessarily the same as Ax1 . The

probability of X2 conditional on X1 is given by

p(x2|x1) = tr[Bx2(ρx1)]. (5.11)

Thus, the joint probability distribution of X1 and X2 is p(x1, x2) = tr[Bx2 ◦ Ax1(ρ)].

Furthermore, the post-measurement quantum state of the system S given the joint outcome

(x1, x2) is

ρx1,x2 = Bx2 ◦ Ax1(ρ)
p(x1, x2) . (5.12)

Equation (5.12) shows that two sequential measurements are described with the composi-

tion of the measurement maps in the correct order, that is, the measurement maps resulting

the joint classical system X1×X2 is Mx1,x2 = Bx2◦Ax1 . We can keep this reasoning iteratively

in order to show that an arbitrary number of measurements on a quantum system is thus

described by the composition of the measurements maps.

For instance, we can define a four-time-step classical process X1 × X2 × X3 × X3 by

defining quantum measurement maps {Ax1 : x1 ∈ X1}, {Bx2 : x2 ∈ X2}, {Cx3 : x3 ∈ X3} and
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X1 X2 X3 X4

S1 S2 S3 S4 S5
ρ A B C D

Figure 5.1: Sequential quantum measurement process. A quantum measurement is
defined with measurement operators. This process generates a classical system associated
with the possible outcomes. The measurement operators of a sequential measurement is
defined by the concatenation of the measurement operators corresponding to each step of the
process.

{Dx4 : x4 ∈ X4}. In turn, this classical process is represented with probability masses

p(x1, x2, x3, x4) = tr[Dx4 ◦ Cx3 ◦ Bx2 ◦ Ax1(ρ)]. (5.13)

Figure 5.1 represents the four-time-step quantum measurement process. Here, we consider

a particular example. We take Ax = Cx and By = Dy, with x ∈ {0, 1, 2, 3} and y ∈ {0, 1}.

Therefore, we set a measurement process with corresponding maps

Mx1,x2,x3,x4 = Bx4 ◦ Ax3 ◦ Bx2 ◦ Ax1 . (5.14)

Let the maps Ax, with x ∈ X1 = X3, be defined with measurement operators represented

in the canonical basis {|0〉 , |1〉} as

A0 =

+0.4953 + i 0.0687 +0.0874− i 0.2751

+0.2751 + i 0.0874 +0.1327 + i 0.2564

 , (5.15)

A1 =

+0.1327 + i 0.2564 0.2751 + i 0.0874

+0.0874− i 0.2751 +0.4953 + i 0.0687

 , (5.16)

A2 =

+0.1327 + i 0.2564 −0.2751− i 0.0874

−0.0874 + i 0.2751 +0.4953 + i 0.0687

 , (5.17)

A3 =

+0.4953 + i 0.0687 −0.0874 + i 0.2751

−0.2751− i 0.0874 +0.1327 + i 0.2564

 . (5.18)
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Figure 5.2: Markov monogamy violation in non-projective quantum measurements.
The plot shows the information inequalities as a function of the parameter α. Markov
monogamy is the only inequality witnessing non-Markovianity in the region shaded in red
color.

Define the maps By, with y ∈ X2 = X4, with measurement operators

B0 =
√

1 + α

2 |+〉 〈+|+
√

1− α
2 |−〉 〈−| , (5.19)

B1 =
√

1− α
2 |+〉 〈+|+

√
1 + α

2 |−〉 〈−| , (5.20)

where |±〉 = (|0〉 ± |1〉)/
√

2 and 0 ≤ α ≤ 1. The parameter α determines to each extent

{B0,B1} is a projective measurement. For the limiting case α = 1 we have a completely

projective measurement in the basis {|+〉 , |−〉}. On the other hand, for α = 0 we have the

opposite situation of a completely non-informative measurement.

If the initial state is ρ = |+〉 〈+| we find that the Markov monogamy inequality is violated

in the region greater than α ' 0.8. Nevertheless, none of the data processing inequalities

are violated, as shown in Fig. 5.2. In turn, this shows how relevant the Markov monogamy

inequalities can be.
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We have constructed a class of classical processes by the action of non-projective quantum

measurements on a quantum system for which Markov monogamy witness non-Markovianity

beyond data processing inequalities. Nevertheless, apart from the fact that we have used

a quantum system in generating classical correlations, the process of interest is completely

classical. This motivates the question whether it is possible to properly define information

inequalities in purely quantum terms. This is the main question addressed in the following

chapters.
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Chapter 6

Quantum data processing inequalities

Classical and quantum processes have a key distinguishing feature. A quantum operation

Λ : L(S1)→ L(S2) transforms the state ρ of its input system S1 into the state σ of its output

system S2. On the other hand, classical operations are represented by conditional probability

distributions p(X2|X1), which maps the state p(X1) of the input system X1 into the state

p(X1, X2) of the joint input and output system X1 ×X2.

Therefore, we can naturally determine the temporal correlations spread through classical

processes. Mutual information plays a central role in characterising classical Markov pro-

cesses. Nevertheless, it does not seem possible to trivially extend the information inequalities

to the quantum realm due to the impossibility of directly compute temporal correlations. We

refer the reader to chapter 9 in Ref. [40] for a more detailed discussion on this regard.

In order to stablish the quantum data processing inequality, we need to replace classical

mutual information by a more appropriate quantity for quantum processes. This is done

with the coherent information. But let us first define the quantum entropy of a system S in

the state ρ as [37]

H(S)ρ = −
∑
λi>0

λi log2 λi, (6.1)

where {λi : i = 1, . . . , dim(S)} are the eigenvalues of ρ. The quantum entropy H(S)ρ is also

denoted as H(S) when the state is implicitly known. It is also denoted as H(ρ) when the

referred quantum system is clear from context.

Now, we define the coherent information of the state ρ of a quantum system S1 with



respect to a quantum channel Λ: L(S1)→ L(S2) as [21]

Ic(ρ; Λ) := H(Λ(ρ))−H((idR ⊗ Λ)(ψ)), (6.2)

where ψ ∈ L(R⊗ S1) is a any purification of ρ.

Note that the coherent information can be expressed as the negative of a conditional

quantum entropy. That is, Ic(ρ; Λ) = −H(R|S2) := H(S2) −H(R, S2). Therefore, coherent

information is positive when there are non-classical correlations between the systems R and

S2.

In what follows, a sequence of quantum states ρ1 ∈ L(S1), ρ2 ∈ L(S2) and ρ3 ∈ L(S3)}

is called a three-time-step quantum Markov process with respect to the quantum channels

Λ1 : L(S1)→ L(S2) and Λ2 : L(S2)→ L(S3) whenever the following conditions are satisfied

ρ2 = Λ1(ρ1), (6.3)

ρ3 = Λ2(ρ2). (6.4)

The quantum data processing inequality is defined as follows for three-time-step quantum

processes. For any quantum state ρ of S1, and for any quantum channels Λ1 : L(S1)→ L(S2)

and Λ2 : L(S2)→ L(S3), it holds that [21]

Ic(ρ1; Λ1) ≥ Ic(ρ1; Λ2 ◦ Λ1). (6.5)

Now we prove that the information inequality above holds for any three-time-step quan-

tum Markov process, the so-called quantum data processing theorem.

Let ψ in L(R⊗ S1) be a purification of the initial state ρ in L(S1). Define also a unitary

representation of the quantum channels Λ1 and Λ2 according to

Λ1(σ1) = trE1

[
U1(σ1 ⊗ ϕ1)U †1

]
(6.6)

and

Λ2(σ2) = trE2

[
U2(σ2 ⊗ ϕ2)U †2

]
, (6.7)
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for any operators σ1 and σ2 in L(S1) and L(S2), respectively. The linear transformations

U1 : S1 ⊗ F1 → S2 ⊗ E1 and U2 : S2 ⊗ F2 → S3 ⊗ E2 are unitary operators, and the pure

quantum states ϕ1 and ϕ2 are in L(F1) and L(F2), respectively.

Furthermore, we can define a purification for the quantum Markov process ρ1
Λ1−→ ρ2

Λ2−→

ρ3. This is done by defining a sequence of three pure quantum states {γ1, γ2, γ3} with respect

to the unitary quantum evolutions U1 and U2. The first stage of the purification of the

Markov process is given by the reference-system-environment system in the pure state

|γ1〉 = |ψ〉 ⊗ |ϕ1〉 ⊗ |ϕ2〉 . (6.8)

Note that tracing out the systems R, F1 and F2 we get the initial state ρ1, in such a way

that |γ1〉 is a purification of S2 as much as |ψ〉.

Then, define the second stage of the purification of the Markov process acting the unitary

operation U1 on the local system S1⊗F1, and swapping the output system S2⊗E1. That is

represented by the pure state

|γ2〉 = (1R ⊗ SWAPS2,E1 ⊗ 1E2)(1R ⊗ U1 ⊗ 1F2) |γ1〉 , (6.9)

where the linear operator SWAPA,B : A⊗B → B ⊗ A is defined requiring that

SWAPA,B(|i〉 ⊗ |j〉) = |j〉 ⊗ |i〉 (6.10)

for arbitrary orthonormal basis {|i〉} and {|j〉} of A and B, respectively. Note that tracing

out the systems R, E1 and F2 we have the system S2 in the state ρ2 = Λ1(ρ1).

The final stage of the three-time-step Markov process purification is obtained by acting

U2 on the S2 ⊗ F2-part, and then swapping the output system S3 ⊗ E2. That is,

|γ3〉 = (1R ⊗ 1E1 ⊗ SWAPS3,E2)(1R ⊗ 1E2 ⊗ U2) |γ2〉 . (6.11)

Note that tracing out R, E1, E2 we have the system S3 in the state ρ3 = Λ2(ρ2) = Λ2(Λ1(ρ1)).

Figure 6.1 shows a diagram representing the purification for the quantum Markov process
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Figure 6.1: Diagram representing the purification of three-time-step quantum
Markov processes. The diagram displays the pure final state obtained by acting succes-
sively the isometric representations (1R⊗Ui)(•⊗|ϕi〉) of Λi (with i = 1, 2) on the purification
ψ of ρ. This picture was adapted from [1].

described above. Note that we can write the quantum data processing inequality depending

upon the states {γ1, γ2, γ3}. The terms in (6.5) are given as

Ic(ρ1; Λ1) = H(S2)γ2 −H(R, S2)γ2 , (6.12)

Ic(ρ1; Λ2 ◦ Λ1) = H(S3)γ3 −H(R, S3)γ3 . (6.13)

Now, consider the following assertions for the pure Markov process γ1
U1−→ γ2

U2−→ γ3:

R⊗ E1 ⊗ E2 ⊗ S3 is pure⇒ H(S3)γ3 = H(R,E1, E2)γ3 , (6.14)

R⊗ E1 ⊗ S2 is pure⇒ H(S2)γ2 = H(R,E1)γ2 , (6.15)

R⊗ E1 ⊗ S2 is pure⇒ H(R, S2)γ2 = H(E1)γ2 , (6.16)

R⊗ E1 ⊗ E2 ⊗ S3 is pure⇒ H(R, S3)γ3 = H(E1, E2)γ3 . (6.17)

Note that a local quantum operation T: L(B)→ L(C) acting on a bipartite system A⊗B

in the state σ preserves the marginal system A. That is true because quantum operations

54



preserve the trace operation, thus, tr[T(P )] = tr[P ] for every P ∈ L(B). In order to check

that trB[σ] = trC [(id ⊗ T)(σ)] for every σ ∈ L(A ⊗ B), define an operator basis {Pj} for

L(B). Then, every linear bipartite operator on A⊗B can be represented as σ = ∑
j σj ⊗Pj.

Furthermore, we have

trC [(id⊗ T)(σ)] =
∑
j

tr[T(Pj)]σj (6.18)

=
∑
j

tr[Pj]σj (6.19)

= trB[σ]. (6.20)

Then, we can write the right-hand-side of Eqs. (6.15) and (6.16) as

H(R,E1)γ2 = H(R,E1)γ3 , (6.21)

H(E1)γ2 = H(E1)γ3 . (6.22)

Finally, the conditions H(R,E1)γ3 = H(S2)γ2 and H(R, S2)γ2 = H(E1)γ3 hold. Moreover,

the strong subadditivity of quantum entropy [46, 47, 48]

H(R,E1, E2)γ3 +H(E1)γ3 ≤ H(R,E1)γ3 +H(E1, E2)γ3 , (6.23)

altogether with Eqs. (6.14)-(6.17), (6.12) and (6.13) imply the desired condition in Eq. (6.5).

Interestingly, the quantum data processing theorem can be reformulated to be stated in

terms of the quantum mutual information I(A : B)ρ = H(A)ρ+H(B)ρ−H(A,B)ρ of bipartite

quantum systems A⊗B in the state ρ. For any bipartite quantum state ρ ∈ L(A⊗B), and

for any quantum channel Λ: L(B)→ L(C), it holds that [37]

I(A : B)ρ ≥ I(A : C)(idA⊗Λ)(ρ). (6.24)

The above result is also called quantum data processing theorem, and furthermore,

Eq. (6.24) is also called quantum data processing inequality. In fact, the following sentences

are equivalent:
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(I) For any quantum state ρ of S1, and for any quantum channels Λ1 : L(S1)→ L(S2) and

Λ2 : L(S2)→ L(S3), it holds the data processing inequality

Ic(ρ; Λ1) ≥ Ic(ρ; Λ2 ◦ Λ1).

(II) For any quantum state σ of a bipartite system A⊗B, and for any quantum operation

Λ: L(B) → L(C), it holds that the quantum mutual information is monotonically

decreasing under the action of the local operation Λ. That is,

I(A : B)σ ≥ I(A : C)(idA⊗Λ)(σ).

We start with the trivial assertion that (I) is a necessary condition for (II). That is, we

prove that (II)⇒ (I). For this matter, suppose (II) is true. Let ρ be the state of an arbitrary

quantum system S1, and ψ be a purification with respect to a bipartite system R ⊗ S1.

Consider also arbitrary quantum channels Λ1 : L(S1) → L(S2) and Λ2 : L(S2) → L(S3).

Since (II) is true by hypothesis, and σ := (idR ⊗ Λ1)(ψ) is a state of the bipartite system

R⊗ S2, we have

I(R : S2)σ ≥ I(R : S2)(idR⊗Λ2)(σ). (6.25)

Subtracting H(R) from both sides in (6.25) we have the desired inequality

Ic(ρ; Λ1) ≥ Ic(ρ; Λ2 ◦ Λ1), (6.26)

for arbitrary ρ, Λ1 and Λ2.

In order to prove the more involving assertion that (II) is a necessary condition for (I),

we only need to use the following result.

Let ψ be a pure state of a bipartite quantum system R ⊗ S1, and let ρ be any state of a

bipartite quantum system R⊗ S2 for which

trS1 [ψ] = trS2 [ρ]. (6.27)

Thus, the states ψ and ρ are different extensions of the same marginal system R. In
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particular, ψ is a purification of R. In such a case, there is a quantum channel Λ: L(S1)→

L(S2) such that [38]

ρ = (idR ⊗ Λ)(ψ). (6.28)

Now, let us prove (I) ⇒ (II) is true. So suppose (I) is true. Following the derivation of

(II) ⇒ (I) we see that in order to prove its converse statement all we need to do is to prove

that all bipartite quantum states can be written as σ := (idR ⊗ Λ2)(ψ) for some pure state

ψ of a bipartite system, and quantum channel Λ1. Then, we can add H(R) to both sides of

Eq. (6.26) and we are done.

So let ρ be an arbitrary quantum state of any bipartite quantum system R⊗S2. Take its

marginal with respect to the system R, that is, τ := trR[ρ]. Now let ψ be a purification of

τ with respect to a purification system S1 such that ψ ∈ R ⊗ S1. Thus we have proved the

existence of a pure quantum state ψ for which trS1 [ψ] = trS2 [ρ]. Now, the above reasoning

makes sure the existence of a quantum channel Λ1 : L(S1) → L(S2) fulfilling the desired

property.

Equation (6.5) is the quantum version of the classical data processing inequality I(X1 :

X2) ≥ I(X1 : X3), for three-time-step classical Markov processes. Nevertheless, that is not

the only possibility for X1 → X2 → X3. We would also expect the information inequality

I(X2 : X3) ≥ I(X1 : X3) to have a quantum counterpart. Would the condition

Ic(Λ1(ρ); Λ2) ≥ Ic(ρ; Λ2 ◦ Λ1) (6.29)

hold for all quantum states ρ ∈ L(S1), and for all quantum channels Λ1 : L(S1)→ L(S2) and

Λ2 : L(S2)→ L(S3)?

Unfortunately, we do not have a conclusive answer to this question. In fact, its validity

is not trivial. Define a purification γ1
U1−→ γ2

U2−→ γ3 to a quantum Markov process ρ1
Λ1−→

ρ2
Λ2−→ ρ3 as represented in Fig. (6.1). Then, Eq. (6.29) can be expressed as

H(E1|E2)γ3 ≥ 0, (6.30)
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where the conditional quantum entropy is defined as H(E1|E2) = H(E1, E2)−H(E2).1

In despite of the non-negativity of classical conditional entropy, quantum conditional

entropy can be negative. For instance, this is the case for maximally entangled systems.

Moreover, the above inequality cannot be derived from the strong subadditivity of quantum

entropy. Nevertheless, we argue on the validity of Eq. (6.30) to a particular example of

quantum Markov processes.

Define the purification of a quantum Markov process as follows. Let all the subsystems in

question be qubits with canonical basis {|0〉 , |1〉}. Then, start the environmental systems F1

and F2 in the same state ϕ1 = ϕ2 = |0〉. Let the bipartite system R⊗S1 be in the maximally

entangled state

|ψ〉 = 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉). (6.31)

Then, define unitary linear operators U1 : S1⊗F1 → S2⊗E1 and U2 : S2⊗F2 → S3⊗E2

with identical representation in the canonical basis as

U (λ) =



0 −
√

1− λ
√
λ 0

1 0 0 0

0 0 0 1

0
√
λ

√
1− λ 0


, (6.32)

where 0 ≤ λ ≤ 1.

The local evolution of the system represented with maps Λi(•) = trEi
[Ui(• ⊗ ϕi)U †i ],

for i ∈ {1, 2}, are then defined as the amplitude damping channel with parameter λ [37].

Figure (6.2) shows that the condition in (6.30) holds for any value of λ in this example. This

is clearly not a proof that this quantum data processing condition holds for any quantum

Markov process. Furthermore, it remains as an open problem.

1The condition in Eq. (6.29) holds with equality for isometric quantum channels Λ1. See Equation (8.42)
in Ref.[39]. That is equivalent of considering a trivial one-dimensional quantum system E1 in Eq. (6.30), and
thus, the conditional entropy vanishes H(E1|E2)γ3 = 0. Nevertheless, we could not find a violation of the
data processing condition in Eq. (6.29) for the examples of quantum Markov processes considered here, as
argued in the Fig. 6.2.
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Figure 6.2: Test of the condition in (6.30). The conditional entropy H(E1|E2) is non-
negative for the pure Markov process in Figure 6.1 with system R ⊗ S1 in the maximally
entangled state, enviromental systems F1 and F2 in the state |0〉, and the unitary operators
U1, U2 as in Eq. (6.32).
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Chapter 7

Quantum Markov monogamy

inequalities

The quantum data processing inequality can be defined within the appropriate definition

of quantum Markov processes. It has at least two equivalent forms. The first form states that

coherent information is monotonically decreasing under the action of a quantum operation.

The second form states that quantum mutual information is monotonically decreasing under

the action of quantum local operations.

Furthermore, would it be possible to define Markov monogamy inequalities for quantum

Markov processes? We answer this question affirmatively here, deriving the quantum Markov

monogamy inequalities. We also show how they take place in two equivalent versions similar

to the case of quantum data processing inequality.

Before moving to derive the quantum Markov monogamy inequalities, we formally define

what is meant by n-time-step quantum Markov processes. A sequence of quantum states

{ρ1, . . . , ρn} is a quantum Markov process with respect to a sequence of quantum channels

{Λ1, . . . ,Λn−1} if the condition

ρi+1 = Λi(ρi) (7.1)

holds for every i ∈ {1, . . . , n− 1}. Such situation is denoted by

ρ1
Λ1−→ ρ2

Λ2−→ ρ3
Λ3−→ . . .

Λn−1−→ ρn. (7.2)



7.1 Four-time-step quantum Markov processes

Let us start considering four-time-step Markov processes. This is the case for which

there is a single Markov monogamy inequality. Recall that for classical Markov processes

X1 → X2 → X3 → X4 the Markov monogamy inequality reads

I(X1 : X4) + I(X2 : X3) ≥ I(X1 : X3) + I(X2 : X4). (7.3)

Now, our goal here is to develop a condition of the same type for quantum Markov

processes ρ1
Λ1−→ ρ2

Λ2−→ ρ3
Λ3−→ ρ4. Thus, consider the reasonable substitution

I(X1 : X4)→ Ic(ρ1; Λ3 ◦ Λ2 ◦ Λ1), (7.4)

I(X1 : X3)→ Ic(ρ1; Λ2 ◦ Λ1), (7.5)

I(X2 : X3)→ Ic(Λ1(ρ1); Λ2), (7.6)

I(X2 : X4)→ Ic(Λ1(ρ1); Λ3 ◦ Λ2). (7.7)

In fact, this reasoning defines a valid condition on four-time-step quantum Markov pro-

cesses. Let S1 be any initial quantum system with state ρ1. For every quantum channels

Λ1 : L(S1)→ L(S2), Λ2 : L(S2)→ L(S3) and Λ3 : L(S3)→ L(S4), it holds that [1]

Ic(ρ1,Λ3 ◦ Λ2 ◦ Λ1) + Ic(Λ1(ρ1),Λ2) ≥ Ic(ρ1,Λ2 ◦ Λ1) + Ic(Λ1(ρ1),Λ3 ◦ Λ2). (7.8)

In order to prove the quantum Markov monogamy inequality in Eq. (7.8), let us define a

purification γ1
U1−→ γ2

U2−→ γ3
U3−→ γ4 for the quantum Markov process ρ1

Λ1−→ ρ2
Λ2−→ ρ3

Λ3−→

ρ4. For this sake, let ψ ∈ L(R⊗ S1) be a purification for the initial state ρ1 ∈ L(S1). Then,

define a dilation for each of the quantum channels Λ1, Λ2 and Λ3. That is, set unitary linear

operators Ui : Si⊗Fi → Si+1⊗Ei and pure initial environmental quantum states ϕi ∈ L(Fi),

with i = 1, 2, 3, such that

Λi(ρ) = trEi

[
Ui(ρ⊗ ϕi)U †i

]
, (7.9)

for any operator ρ in L(Si).

The pure quantum Markov process γ1
U1−→ γ2

U2−→ γ3
U3−→ γ4 is then defined as follows.
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Figure 7.1: Diagram representing the purification of the process ρ1
Λ1−→ ρ2

Λ2−→ ρ3
Λ3−→

ρ4. The quantum state ψ is a purification of ρ1. Thus, ρ1 is obtained from ψ by tracing out the
R system. The unitary operator Ui and the pure state ϕi provide a dilation of the quantum
channel Λi, with i ∈ {1, 2, 3, 4}. The remaining quantum states ρ2, ρ3, ρ4 are obtained by
acting the unitary operations and tracing out the appropriate reference-environment systems.
Picture adapted from [1].

Let the initial state γ1 be the tensor product of ψ and the initial environmental states ϕ1,

ϕ2 and ϕ3. Now, we can define the process recursively. For any i ∈ {1, 2, 3}, the quantum

state γi+1 is obtained acting the local unitary operation Ui on the quantum state γi and then

swapping its output systems. Figure 7.1 is a pictorial representation of the this pure process.

Explicitly, we have the sequence of pure states

|γ1〉 = |ψ〉 ⊗ |ϕ1〉 ⊗ |ϕ2〉 ⊗ |ϕ3〉 , (7.10)

|γ2〉 = (1R ⊗ SWAPS2,E1 ⊗ 1F2⊗F3)(1R ⊗ U1 ⊗ 1F2⊗F3) |γ1〉 , (7.11)

|γ3〉 = (1R⊗E1 ⊗ SWAPS3,E2 ⊗ 1F2)(1R⊗E1 ⊗ U2 ⊗ 1F3) |γ2〉 , (7.12)

|γ4〉 = (1R⊗E1⊗E2 ⊗ SWAPS4,E3)(1R⊗E1⊗E2 ⊗ U3) |γ3〉 . (7.13)

Now, the coherent information terms involved in Eq. (7.8) can be computed with respect
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to the purification of the quantum Markov process as

Ic(ρ1; Λ3 ◦ Λ2 ◦ Λ1) = H(S4)γ4 −H(R, S4)γ4 , (7.14)

Ic(Λ1(ρ1); Λ2) = H(S3)γ3 −H(R,E1, S3)γ3 , (7.15)

Ic(ρ1; Λ2 ◦ Λ1) = H(S3)γ3 −H(R, S3)γ3 , (7.16)

Ic(Λ1(ρ1); Λ3 ◦ Λ2) = H(S4)γ4 −H(R,E1, S4)γ4 . (7.17)

Once again, the purification of the quantum Markov process has been introduced in order

to easy the computation and facilitate the derivation of the quantum Markov monogamy

inequality. Furthermore, it holds the equality conditions

H(R, S4)γ4 = H(E1, E2, E3)γ4 , (7.18)

H(R,E1, S3)γ3 = H(E2)γ3 = H(E2)γ4 , (7.19)

H(R, S3)γ3 = H(E1, E2)γ3 = H(E1, E2)γ4 , (7.20)

H(R,E1, S4)γ4 = H(E2, E3)γ4 . (7.21)

Now we are ready to check that Eq. (7.8) holds for every four-time-step quantum Markov

process, that is, for every quantum state ρ1 and quantum channels Λ1, Λ2 and Λ3. Consider

the marginal system E1⊗E2⊗E3 with quantum state trR,S4 [γ4]. Then, strong subadditivity

of quantum entropy implies that

H(E1, E2, E3) +H(E2) ≤ H(E1, E2) +H(E2, E3). (7.22)

Solving the above inequality for Ic(ρ1; Λ3 ◦ Λ2 ◦ Λ1), Ic(Λ1(ρ1); Λ2), Ic(ρ1; Λ2 ◦ Λ1) and

Ic(Λ1(ρ1); Λ3 ◦ Λ2) with the assistance of Eqs. (7.18)-(7.21), we conclude the proof that the

desired information inequality in Eq. (7.8) holds for every four-time-step quantum Markov

process.

The information inequality in Eq. (7.8) can be formulated in terms of the conditional

quantum mutual information defined in the following. Let ρ be a tripartite state in L(A ⊗
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B ⊗ C). Then, the mutual information of A and B conditional on C is given by [37]

I(A : B|C)ρ = H(A,C) +H(B,C)−H(A,B,C)−H(C). (7.23)

With this definition, the following statements are equivalent [1]:

(I) For each quantum state ρ1 ∈ L(S1), and for each quantum channels Λ1 : L(S1) →

L(S2), Λ2 : L(S2)→ L(S3) and Λ3 : L(S3)→ L(S4), it holds that

Ic(ρ1,Λ3 ◦ Λ2 ◦ Λ1) + Ic(Λ1(ρ1),Λ2) ≥ Ic(ρ1,Λ2 ◦ Λ1) + Ic(Λ1(ρ1),Λ3 ◦ Λ2). (7.24)

(II) For any tripartite quantum state σ ∈ L(A ⊗ B ⊗ C), and for any quantum opera-

tion Λ: L(B) → L(D), it holds that the conditional quantum mutual information is

monotonically decreasing under the action of the local operation Λ. That is,

I(A : B|C)σ ≥ I(A : D|C)(idA⊗Λ⊗idA)(σ). (7.25)

The proof of (I)⇔ (II) is similar to the one for the two versions of quantum data processing

theorem in chapter 6. For that, let ψ ∈ L(R⊗S1) be a pure quantum state and ρ ∈ L(R⊗S2)

be an arbitrary quantum state. Recall that there is a quantum channel Λ: L(S1) → L(S2)

such that ρ = idR ⊗ Λ(ψ) if trS1 [ψ] = trS2 [ρ]. We now follow the proof in Ref. [1].

The sentence (II) ⇒ (I) is clearly true. Suppose that (II) is true. Take a purification of

the quantum Markov process as in Eqs. (7.10)-(7.13). Then, the quantum Markov monogamy

is given by

H(R, S3)γ3 −H(R,E1, S3)γ3 ≥ H(R, S4)γ4 −H(R,E1, S4)γ4 (7.26)

Adding the term H(R,E1)γ3 − H(E1)γ3 = H(R,E1)γ4 − H(E1)γ4 to both sides of this

inequality, we obtain

I(R : S3|E1)γ3 ≥ I(R : S4|E1)γ4 . (7.27)

Now, note that the subsystem R ⊗ S4 ⊗ E1 of γ4 is obtained by the local action of a

quantum channel Λ3 : L(S3) → L(S4) on the subsystem R ⊗ S3 ⊗ E1 of γ3. Thus, the first
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part of the proof is done.

In order to prove (I) ⇒ (II), show that any tripartite quantum state ρ ∈ L(A ⊗ B ⊗ C)

can be written as

ρ = (idA ⊗ Λ⊗ idC)(idA ⊗ U)(ψ ⊗ ϕ), (7.28)

where ψ is a state of a bipartite system A ⊗ D, ϕ is a pure bipartite state of a system E,

U: L(D⊗E)→ L(F ⊗C) is a unitary quantum channel, and Λ: L(F )→ L(B) is a quantum

channel. That is, every ρ can be written as a quantum state with the same form as in Fig. 7.1.

This is done as follows.

Let τ be the tripartite quantum state obtained by swapping the systems B and C of

ρ. Then, define the marginal state with respect to the bipartite system A ⊗ C, that is,

ω = trB[τ ]. By the same reasoning as before, we know there are a pure bipartite state

ψ ∈ L(A⊗D) and a quantum channel Ω := L(D)→ L(C) for which ω = (idA ⊗ Ω)(ψ). Let

U : D ⊗ E → C ⊗ F be a dilation of Ω, such that for some pure state ϕ of the system E we

have Ω(•) = trF[U(• ⊗ ϕ)U †].

Then, define the unitary quantum channel Ũ(•) = V (• ⊗ ϕ)V †, where V is the unitary

operator obtained by the action of U followed by the swap operation. That is,

V = SWAP ◦ U. (7.29)

Define the pure tripartite quantum state η = (idA⊗Ũ)(ψ⊗ϕ). The state η is a purification

of ω. Then, we have trF[η] = trB[τ ]. Furthermore, there is a quantum channel Λ: L(F) →

L(B) for which τ = (idA ⊗ idC ⊗ Λ)(η). Moreover, consider swapping the systems C and B

of τ to recover

ρ = (idA ⊗ Λ⊗ idC)(idA ⊗ U)(ψ ⊗ ϕ), (7.30)

with U(•) = U(•)U †.
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7.2 Witnessing non-Markov behaviour with quantum

information inequalities

Here, we consider how quantum information inequalities can be used to witness quantum

non-Markovianity. So far, we have properly defined what is meant by quantum Markov

processes. Nevertheless, no mention has been made on what is a quantum non-Markov

process. So we now examine the distinction between Markov and non-Markov processes.

For instance, let us start with three-time-step quantum Markov processes. Every quantum

process ρ1
Λ1−→ ρ2

Λ2−→ ρ3 has a system-environment representation provided by the dilation

of the quantum operations Λ1 and Λ2. Let Ui : L(Si) ⊗ L(Fi) → L(Si+1) ⊗ L(Ei) be the

unitary representation of the channel Λi when the environment Fi is in the state ϕi, with

i ∈ {1, 2}.

In each step of a quantum Markov process, the system is found uncorrelated with the

environment. So in the intermediary stage the environment system E1 is discarded and

replaced with a system F2 in a fixed quantum state ϕ2. That is represented by the replacement

channel ∆: L(E1)→ L(F2) such that

∆(ω) = tr[ω]ϕ2, (7.31)

for every ω ∈ L(E1).

Furthermore, the sequence of system-environment states {π1, π2, π3} with respect to three-

time-step quantum Markov process can always be expressed as

π1 = ρ1 ⊗ ϕ1, (7.32)

π2 = U1(π1), (7.33)

π3 = U2 ◦ (idS2 ⊗∆)(π2). (7.34)

The quantum process ρ1
Λ1−→ ρ2

Λ2−→ ρ3 is then equivalently defined as the reduced

dynamics of π1 → π2 → π3 in Eqs. (7.32), (7.33) and (7.34). In fact, this is usually adopted

as a definition for quantum Markov processes in literature [24]. The top panel of Figure 7.2
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presents a diagrammatic system-environment representation of quantum Markov processes.

On the other hand, quantum non-Markov processes allow for non-trivial correlations

through system-environment evolution. That is, our initial system-environment bipartite

state σ ∈ L(S1 ∈ F1) is possibly not a product state of the form in (7.32). Importantly,

instead of resetting the environmental system in a fixed quantum state ϕi every step, non-

Markov processes let the system Fi+1 be fed with the previous environmental system Ei. So

our replacement channel ∆ in a three-time-step Markov process is substituted by the identity

channel id.

The sequence of system-environment states {π1, π2, π3} in a non-Markov process is thus

of the type

π1 ∈ L(S1 ⊗ F1), (7.35)

π2 = U1(π1), (7.36)

π3 = (U2 ◦ U1)(π2), (7.37)

where now the environmental systems E1 and F2 are identical copies (isomorphic). The

bottom panel of Figure 7.2 diagrammatically represents the system-environment quantum

non-Markov process in Eqs. (7.35), (7.36) and (7.37).

Now we are ready to define witnesses on quantum non-Markovianity relying on the quan-

tum information inequalities developed so far. Namely, the quantum data processing in-

equality in Eq. (6.5) and the quantum Markov monogamy inequality in Eq. (7.8). Let

ρ1
Λ1−→ ρ2

Λ2−→ ρ3
Λ3−→ ρ4 be any quantum Markov process. Then, it follows the positive
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Figure 7.2: System-environment representation of quantum Markov and quantum
non-Markov processes. The top panel shows a pictorial representation of quantum Markov
processes. In any time-step the environmental system is replaced by a new system in a
particular fixed state. Therefore, the system and environment are uncorrelated in every
stage of the process. The bottom panel considers the distinct situation of quantum non-
Markov processes. In fact, any system-environment process violating the conditions in the
top panel is cast as a non-Markov process. Here, our example shows how this may be done
allowing for environmental memories through evolution.
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semi-definite quantities

DP(q)
1 :=Ic(ρ1; Λ1)− Ic(ρ1; Λ2 ◦ Λ1), (7.38)

DP(q)
2 :=Ic(ρ1; Λ1)− Ic(ρ1; Λ3 ◦ Λ2 ◦ Λ1), (7.39)

DP(q)
3 :=Ic(ρ1; Λ2 ◦ Λ1)− Ic(ρ1; Λ3 ◦ Λ2 ◦ Λ1), (7.40)

DP(q)
4 :=Ic(ρ2; Λ2)− Ic(ρ2; Λ3 ◦ Λ2), (7.41)

M4(q) :=Ic(ρ1; Λ3 ◦ Λ2 ◦ Λ1) + Ic(ρ2; Λ2)

− Ic(ρ1; Λ2 ◦ Λ1)− Ic(ρ2; Λ3 ◦ Λ2). (7.42)

Let ψ ∈ L(R⊗S1) be a purification of the initial state ρ1 ∈ L(S1). Then, define a dilation

for Λ1 with unitary channel U1 : L(S1 ⊗ F1)→ L(S2 ⊗E1) and pure quantum state ϕ1 ∈ F1.

Now we can represent the quantum Markov process with the sequence of reference-system-

environment quantum states

γ1 = ψ ⊗ ϕ1, (7.43)

γ2 = idR ⊗ U1(γ1), (7.44)

γ3 = idR ⊗ Λ2 ⊗ idE1(γ2), (7.45)

γ4 = idR ⊗ Λ3 ⊗ idE1(γ3), (7.46)

Distinctly, quantum non-Markov processes have a non-trivial system-environment inter-

action through evolution. For instance, consider the following example of qubit reference,

system and environment systems with canonical basis {|0〉 , |1〉}. Let the initial reference-

system-environment be in a pure maximally entangled state

|γ1〉 = 1√
3

(|1, 0, 0〉+ |0, 1, 0〉+ |0, 0, 1〉). (7.47)
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Then, define the sequence of tripartite reference-system-environment states

γ2 = idR ⊗ U(λ)(γ1), (7.48)

γ3 = idR ⊗ U(λ)(γ2), (7.49)

γ4 = idR ⊗ U(λ)(γ1), (7.50)

where U(λ) : L(S ⊗ E)→ L(S ⊗ E) a single Kraus operator defined in Eq. (6.32).

Figure 7.3 depicts the difference between quantum Markov processes and the example

of non-Markov process in Eqs. (7.47)-(7.50). In terms of this tripartite reference-system-

environment representation, the witnesses in Eqs. (7.38)-(7.42) take the form

DP(q)
1 = [H(S)−H(R, S)]γ2 − [H(S)−H(R, S)]γ3 , (7.51)

DP(q)
2 = [H(S)−H(R, S)]γ2 − [H(S)−H(R, S)]γ4 , (7.52)

DP(q)
3 = [H(S)−H(R, S)]γ3 − [H(S)−H(R, S)]γ4 , (7.53)

DP(q)
4 = [H(S)−H(R, S,E)]γ3 − [H(S)−H(R, S,E)]γ4 , (7.54)

M4(q) = [H(R, S,E)−H(R, S)]γ4 − [H(R, S)−H(R, S,E)]γ3 . (7.55)

Figure 7.4 shows the witnesses of quantum non-Markovianity above as a function of λ.

The data processing conditions DP(q)
1 and DP(q)

2 are not violated for any value of λ. On the

other hand, the data processing conditions DP(q)
3 and DP(q)

4 are violated for 0.15 ≤ λ ≤ 1. For

the region 0.85 ≤ λ ≤ 1 the conditions DP(q)
3 and DP(q)

4 are the only information inequalities

witnessing the non-Markovianity of the process. The quantum Markov monogamy inequality

is violated for 0 ≤ λ ≤ 0.85. The quantity M4(q) is the only information inequality witnessing

the non-Markov process for 0 ≤ λ ≤ 0.15. Moreover, for any value of λ there is a quantum

information inequality witnessing the non-Markovianity.

It was claimed in chapter 6 that the information inequality Ic(Λ1(ρ); Λ2) ≥ Ic(Λ1(ρ); Λ2)

hold for some quantum states ρ and quantum channels Λ1 and Λ2. Nevertheless, it was not

provided a proof of its validity in general. Now, we show that information inequalities of this

type are not violated for the non-Markov process considered here.

In this case, four-time-step Markov processes ρ1
Λ1−→ ρ2

Λ2−→ ρ3
Λ3−→ ρ4 are expected to
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Figure 7.3: Reference-system-environment representation of quantum Markov and
non-Markov processes. Top panel pictorially represents reference-system-environment
quantum Markov processes. The reference system R is a purification system for S. The initial
system E works as an environment for the first evolution, thus being uncorrelated from the
R ⊗ S-part. Furthermore, the initial system-environment can go thought arbitrary unitary
evolution U . The subsequent evolution maps Λ2 and Λ3 can be any quantum channels acting
locally on the system-part. Bottom panel shows an example of reference-system-environment
process violating this conditions, thus being called quantum non-Markov process. There, the
initial system R⊗S is entangled with the initial environment E. Then, system-environment
follow successive global unitary evolutions U1, U2 and U3.
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Figure 7.4: Quantum Markov monogamy violation. Quantum Markov monogamy is
the only information inequality being violated in the region 0 ≤ λ ≤ 0.15 (shaded in red).
Nevertheless, the converse situation is also possible. In the region 0.85 ≤ λ ≤ 1 (shaded in
blue), the quantum Markov monogamy inequality is not violated, while the data processing
conditions in (7.54) and (7.55) witness the non-Markov behavior of the process.

define positive semi-definite quantities

DP(q)
5 = Ic(Λ1(ρ); Λ2)− Ic(ρ; Λ2 ◦ Λ1), (7.56)

DP(q)
6 = Ic(Λ1(ρ); Λ2)− Ic(ρ; Λ3 ◦ Λ2 ◦ Λ1) (7.57)

DP(q)
7 = Ic(Λ1(ρ); Λ3 ◦ Λ2)− Ic(ρ; Λ3 ◦ Λ2 ◦ Λ1), (7.58)

DP(q)
8 = Ic(Λ2 ◦ Λ1(ρ); Λ3)− Ic(ρ; Λ3 ◦ Λ2 ◦ Λ1), (7.59)

DP(q)
9 = Ic(Λ2 ◦ Λ1(ρ); Λ3)− Ic(Λ1(ρ); Λ3 ◦ Λ2). (7.60)

Note that DP(q)
8 and DP(q)

9 also depend upon the environmental system of the quantum

channel Λ2. Therefore, those information inequalities cannot be used in our example. In terms

of the tripartite reference-system-environment representation, the information inequalities
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Figure 7.5: Non-violation of DP(q)
5 , DP(q)

6 and DP(q)
7 for the non-Markov process con-

sidered in Eqs. (7.47,7.48,7.49,7.50). The quantities defined in Eqs. (7.61,7.62,7.63) are
positive for the quantum non-Markov processes represented in the bottom panel of Figure 7.3.
Picture addapted from [1].

with respect to Eqs. (7.56), (7.57) and (7.58) are written as

DP(q)
5 = [H(R, S)−H(R, S,E)]γ3 , (7.61)

DP(q)
6 = [H(S)−H(R, S,E)]γ3 − [H(S)−H(R, S)]γ4 , (7.62)

DP(q)
7 = [H(S)−H(R, S,E)]γ4 − [H(S)−H(R, S)]γ4 . (7.63)

Figure 7.5 reveals that the information inequalities DP(q)
5 ,DP(q)

6 ,DP(q)
7 ≥ 0 are not vio-

lated for the example of non-Markov processes examined here.1 Therefore, quantum Markov

monogamy is the only information inequality witnessing non-Markovianity in the regime

0 ≤ λ ≤ 0.15 under the tripartite reference-system-environment representation in Fig-

ure 7.3. Nevertheless, it is not possible to witness non-Markovianity with the quantum

Markov monogamy inequality in the region 0.85 ≤ λ ≤ 1, case for which only the quantum

data processing inequalities are successively violated.
1Recall that the validity of the inequalities in Eqs. (7.56)-(7.58) was not proved for arbitrary quantum

Markov processes. Here, we claim that even if they were valid in general, they would not witness the non-
Markov processes considered in this example.
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7.3 Six-time-step quantum Markov processes

The information inequalities become more involved as we increase the number of time-

steps in the processes. Therefore, from now on we adopt a convention in order to simplify

the definition of information inequalities in terms of coherent information. For any Markov

process ρ1
Λ1−→ ρ2

Λ2−→ · · ·Λn−1−→ ρn we use the shorthand notation

Ic(ρr : ρs) := Ic(Λr−1 ◦ · · · ◦ Λ1(ρ1); Λs−1 ◦ · · · ◦ Λr), (7.64)

for 1 ≤ r < s ≤ n.

Let us define an arbitrary six-time-step quantum Markov process ρ1
Λ1−→ ρ2

Λ2−→ · · · Λ5−→

ρ6. So let ρ ∈ L(S1) be any quantum state. For every quantum channels Λi : L(Si)→ L(Si+1)

set ρi+1 = Λi(ρi), with i ∈ {1, . . . , 5}. Then, it holds that [1]

Ic(ρ1 : ρ6) + Ic(ρ2 : ρ5) + Ic(ρ3 : ρ4) ≥ Ic(ρ1 : ρ4) + Ic(ρ2 : ρ6) + Ic(ρ3 : ρ5); (7.65)

Ic(ρ1 : ρ6) + Ic(ρ2 : ρ5) + Ic(ρ3 : ρ4) ≥ Ic(ρ1 : ρ5) + Ic(ρ2 : ρ4) + Ic(ρ3 : ρ6). (7.66)

In order to derive the quantum Markov monogamy inequalities above, let the quantum

channels Λi have isometric representations V : Si → Si+1 ⊗ Ei, with i ∈ {1, . . . , 5}. That is,

Λi(ρ) = trEi
[ViρV †i ] for every ρ ∈ L(Si). The strategy is completely analogous to before, and

we only provide an sketch of the proof here.

Consider any purification of the quantum Markov process as in Figure 7.6. Then, write the

relevant coherent information quantities in terms of entropies of the environmental systems

Ei, where i ∈ {1, 2, 3, 4, 5}. The proof of quantum Markov monogamy inequalities follows

adding strong subadditivity inequalities relating the environmental systems only. The inter-

ested reader is invited to check this on a more detailed version. Here, we only provide the

strong subadditivity inequalities in question.

In order to prove Eq. (7.65), add the strong subadditivity inequalities

I(E1 : E5|E2, E3, E4) ≥ 0, (7.67)

I(E1, E2 : E4|E3) ≥ 0. (7.68)
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Figure 7.6: Purification of six-time-step quantum Markov processes. The purification
of every process ρ1

Λ1−→ · · · Λ5−→ ρ6 is defined as follows. The quantum state ψ is a purification
of ρ1. The unitary operator Ui : Si ⊗ Fi → Si+1 ⊗ Ei and the pure state ϕi of Fi specify a
unitary representation of the quantum channel Λi, with i ∈ {1, 2, 3, 4, 5}. An isometric
representation is defined with Vi(•) = Ui(• ⊗ ϕi). The purification process is defined acting
the unitary operator Ui on the appropriate system-environment part, and then swapping the
resulting output. The marginal quantum states {ρ1, . . . , ρ6} are obtained tracing out the
appropriate reference-environment subsystems.
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To prove Eq. (7.66), consider

I(E1 : E5|E2, E3, E4) ≥ 0, (7.69)

I(E1 : E4, E5|E3) ≥ 0. (7.70)

The quantum Markov monogamy inequalities for six-time-step processes also have an

equivalent version in terms of conditional quantum mutual information. The following sen-

tences are equivalent forms of quantum Markov monogamy relations [1]:

(I) Equations. (7.65) and (7.66) hold for any six-time-step quantum Markov process ρ1
Λ1−→

ρ2
Λ2−→ · · · Λ5−→ ρ6.

(II) For any quantum state ρ ∈ L(R ⊗ E1 ⊗ E2 ⊗ S4), and for any quantum channels

Λ4 : L(S4)→ L(S5) and Λ5 : L(S5)→ L(S6), it holds that

I(R : S4|E1, E2) ≥ I(R,E1 : S5|E2) + I(R : S6|E1), (7.71)

I(R,E1 : S4|E2) + I(R : S5|E1) ≥ I(R : S6|E1, E2). (7.72)

The proof of (I) ⇔ (II) follows the same steps as in the case of four-time-step quantum

Markov processes. Therefore, we only discuss a sketch of the proof here. The part (II)

⇒ (I) is trivial. The challenge in part (I) ⇒ (II) is to show that any quantum state ρ ∈

L(R⊗ E1 ⊗ E2 ⊗ S4) can be written as

ρ = (idR⊗E1⊗E2 ⊗ Λ)(idR⊗E1 ⊗ U2)(idR ⊗ U1 ⊗ idE2)(ψ ⊗ ϕ1 ⊗ ϕ2), (7.73)

with pure quantum states ψ ∈ L(R ⊗ S1), ϕ1 ∈ L(F1), ϕ2 ∈ L(F2), unitary quantum

channels U1 : L(S1 ⊗ F1) → L(E1 ⊗ S2), U2 : L(S2 ⊗ F2) → L(E2 ⊗ S3), and a quantum

channel Λ: L(S3) → L(S4). The interested reader is urged to check all the details in this

derivation.
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7.4 Eight-time-step quantum Markov processes

Now we move on to consider the quantum Markov monogamy inequalities for eight-

time-step processes. This will be our last step towards extending the conjecture on Markov

monogamy inequalities from classical to quantum processes.

We start by defining an arbitrary eight-time-step quantum Markov process. Let ρ1 ∈

L(S1) be the initial quantum state. Then, define quantum channels Λi : L(Si) → L(Si+1)

from which follows the quantum states ρi+1 = Λi(ρi), with i ∈ {1, . . . , 7}. It holds that [1]

Ic(ρ1 : ρ8) + Ic(ρ2 : ρ7) + Ic(ρ3 : ρ6) + Ic(ρ4 : ρ5) ≥

Ic(ρ1 : ρ5) + Ic(ρ2 : ρ8) + Ic(ρ3 : ρ7) + Ic(ρ4 : ρ6), (7.74)

Ic(ρ1 : ρ8) + Ic(ρ2 : ρ7) + Ic(ρ3 : ρ6) + Ic(ρ4 : ρ5) ≥

Ic(ρ1 : ρ7) + Ic(ρ2 : ρ5) + Ic(ρ3 : ρ8) + Ic(ρ4 : ρ6), (7.75)

Ic(ρ1 : ρ8) + Ic(ρ2 : ρ7) + Ic(ρ3 : ρ6) + Ic(ρ4 : ρ5) ≥

Ic(ρ1 : ρ6) + Ic(ρ2 : ρ8) + Ic(ρ3 : ρ5) + Ic(ρ4 : ρ7), (7.76)

Ic(ρ1 : ρ8) + Ic(ρ2 : ρ7) + Ic(ρ3 : ρ6) + Ic(ρ4 : ρ5) ≥

Ic(ρ1 : ρ5) + Ic(ρ2 : ρ6) + Ic(ρ3 : ρ8) + Ic(ρ4 : ρ7), (7.77)

Ic(ρ1 : ρ8) + Ic(ρ2 : ρ7) + Ic(ρ3 : ρ6) + Ic(ρ4 : ρ5) ≥

Ic(ρ1 : ρ7) + Ic(ρ2 : ρ6) + Ic(ρ3 : ρ5) + Ic(ρ4 : ρ8), (7.78)
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Ic(ρ1 : ρ8) + Ic(ρ2 : ρ7) + Ic(ρ3 : ρ6) + Ic(ρ4 : ρ5) ≥

Ic(ρ1 : ρ6) + Ic(ρ2 : ρ5) + Ic(ρ3 : ρ7) + Ic(ρ4 : ρ8), (7.79)

Ic(ρ1 : ρ8) + Ic(ρ2 : ρ7) + Ic(ρ3 : ρ6) + Ic(ρ4 : ρ5) ≥

Ic(ρ1 : ρ5) + Ic(ρ2 : ρ6) + Ic(ρ3 : ρ7) + Ic(ρ4 : ρ8). (7.80)

In order to check the validity of the quantum Markov monogamy inequalities above, we

need to define a purification for the process as in Figure 7.7. Once again, the detailed proof of

the information inequalities above is omitted. Nevertheless, it follows the strong subadditivity

inequalities adding up to the referred quantum Markov monogamy inequalities.

In order to prove Eq. (7.74), add

I(E1 : E7|E2, E3, E4, E5, E6) ≥ 0, (7.81)

I(E1, E2 : E6|E3, E4, E5) ≥ 0, (7.82)

I(E1, E2, E3 : E5|E4) ≥ 0. (7.83)

To prove Eq. (7.75), add

I(E1 : E7|E2, E3, E4, E5, E6) ≥ 0, (7.84)

I(E2 : E6, E7|E3, E4, E5) ≥ 0, (7.85)

I(E2, E3 : E5|E4) ≥ 0. (7.86)

To prove Eq. (7.76), add

I(E1 : E7|E2, E3, E4, E5, E6) ≥ 0, (7.87)

I(E1, E2 : E6|E3, E4, E5) ≥ 0, (7.88)

I(E3 : E5, E6|E4) ≥ 0. (7.89)
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Figure 7.7: Purification of eight-time-step quantum Markov processes. The purifi-
cation of any process ρ1

Λ1−→ · · · Λ7−→ ρ8 is given with a purification for the initial system S1
and unitary representations of the quantum channels Λ1, . . . ,Λ8. In the picture, the quantum
state ψ is a purification of ρ1. The unitary operator Ui : Si ⊗ Fi → Si+1 ⊗ Ei and the pure
state ϕi of Fi refers to a dilation of the quantum channel Λi, with i ∈ {1, . . . , 7}. Note that
the system-environment subsystem is swapped after the action of each unitary operation.
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To prove Eq. (7.77), add

I(E1 : E7|E2, E3, E4, E5, E6) ≥ 0, (7.90)

I(E2 : E6, E7|E3, E4, E5) ≥ 0, (7.91)

I(E1, E2, E3 : E5, E6|E4) ≥ 0. (7.92)

To prove Eq. (7.78), add

I(E1 : E7|E2, E3, E4, E5, E6) ≥ 0, (7.93)

I(E2 : E6, E7|E3, E4, E5) ≥ 0, (7.94)

I(E3 : E5, E6, E7|E4) ≥ 0. (7.95)

To prove Eq. (7.79) add

I(E1 : E7|E2, E3, E4, E5, E6) ≥ 0, (7.96)

I(E1, E2 : E6|E3, E4, E5) ≥ 0, (7.97)

I(E2, E3 : E5, E6, E7|E4) ≥ 0. (7.98)

To prove Eq. (7.80), add

I(E1 : E7|E2, E3, E4, E5, E6) ≥ 0, (7.99)

I(E1, E2, E3 : E5, E6|E4) ≥ 0, (7.100)

I(E2 : E6, E7|E3, E4, E5) ≥ 0, (7.101)

I(E3 : E7|E4, E5, E6) ≥ 0. (7.102)

7.5 Conjecture on quantum Markov monogamy inequal-

ities

Markov monogamy inequalities hold for quantum Markov processes ρ1
Λ1−→ ρ2

Λ2−→ ρ3
Λ3−→

. . .
Λn−1−→ ρn, with at least n = 4, 6, 8. In the previous sections of this chapter we have gone
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through a detailed examination of the quantum Markov inequalities for these cases. The

proof for each one of them has been addressed.

The ultimate goal of this study would be deriving the quantum Markov monogamy in-

equalities for general quantum Markov processes, that is, for arbitrary even integer n greater

than or equal to 4. The natural approach could be addressing the proof with inductive rea-

soning. Nevertheless, the Markov monogamy inequalities for processes with (n+2)-time-steps

do not directly follow from the case of n-time-step processes. This is similar to the case of

classical processes.

Furthermore, we now conjecture on the validity of Markov monogamy inequalities for

general 2m-time-step Markov quantum processes (with integer m ≥ 2)

ρm
Γm−1−→ · · · Γ1−→ ρ1

Λ−→ σ1
Ω1−→ · · ·Ωm−1−→ σm. (7.103)

Let ρ1 ∈ L(Sin1 ) and σ1 ∈ L(Sout1 ) be the input and output states of a quantum channel Λ.

Then, define the next pre- and post-processed quantum states ρi+1 = Γi(ρi) and σi+1 = Ωi(σi)

with encoding and decoding quantum operations Γi : L(Sini+1) → L(Sini ) and Ωi : L(Souti ) →

L(Souti+1) with i ∈ {1, . . . ,m− 1}, respectively.

Now, for any bijective function

f : {1, . . . ,m} → {1, . . . ,m}, (7.104)

it is expect to hold the quantum Markov monogamy inequality

n∑
i=1

Ic(ρi : σi) ≥
n∑
i=1

Ic(ρi : σf(i)). (7.105)

The proof of the information inequality above remains as a major open problem related

to this thesis. Note that we have provided the proof of its validity for m ∈ {2, 3, 4}. Now,

we move to the last chapter in this thesis, extending the information inequalities considered

so far to the interventional approach.
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Chapter 8

Interventional quantum information

inequalities

In chapter 6 and chapter 7 we have defined quantum data processing inequalities and

quantum Markov monogamy inequalities, respectively. Those appear as limits on what is

possible to achieve under the model of quantum Markov processes. Quantum Markovianity

has been introduced as a particular system-environment dynamics for which the environment

is reset to a fixed quantum state every stage of the process (cf. Figure 7.2). Moreover, in

Eq. (7.1) a Markov process is defined fixing a initial quantum state which goes through the

action of fixed quantum channels in a well defined order.

Nevertheless, this is not the most general definition of quantum process one could possibly

conceive. For instance, one could allow for an intervention on the system-part in each stage

of the process with any valid quantum operation. The process tensor formalism has been

introduced in [49] to deal with quantum processes from an operational perspective. See also

[50, 51] for reviews on this approach.

In this chapter we consider how to define information inequalities with the process tensor

formalism. We first introduce process tensors as higher-order quantum operations. Then,

we consider how information inequalities can be defined from a particular interventional

scheme. Here, we only discuss in detail the derivation of the interventional quantum Markov

monogamy inequality for four-time-step process tensors.



8.1 Process tensor formalism

In general, a process tensor is a linear transformation mapping time-ordered interventions

to a quantum state. Much development of the quantum theory of Markovian processes has

been achieved since then under this framework [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68].

Let us start with the case of three-time-step process for simplicity. So define an arbitrary

intervention for each time-step i ∈ {1, 2, 3} with quantum channels Ai : L(Si)→ L(S ′i). Each

intervention Ai can be any valid quantum operation, and therefore, are now cast as variables

in the process. Furthermore, the input and output system of Ai do not need to be copies

of each other. That is because a valid intervention on the system could consist of adding or

removing quantum systems, for instance.

Now, our three-time-step quantum Markov process is realized as a quantum higher-order

transformation Υ mapping the sequence interventions {A1,A2,A3} to the final quantum state

Υ(A1,A2,A3) = A3 ◦ Λ2 ◦ A2 ◦ Λ1 ◦ A1(ρ), (8.1)

where the initial quantum state ρ ∈ L(S1), and quantum channels Λ1 : L(S ′1) → L(S2),

Λ2 : L(S ′2)→ L(S3) are fixed.

ρ Λ1 Λ2
S1 S ′1 S2 S ′2 S3 S ′3

ρ A1 Λ1 A2 Λ2 A3
S1 S ′1 S2 S ′2 S3 S ′3

Figure 8.1: Quantum Markov processes with interventions. A quantum Markov pro-
cess allowing for interventions is a higher-order quantum operation (top panel) mapping a
sequence of quantum operations to a quantum state (bottom panel).

Figure 8.1 is a pictorial representation of quantum Markov processes allowing for inter-

ventions. For instance, within this approach we can recover the definition in Eq. (7.1). For

this, consider the case where Si and S ′i are identical copies, for each i ∈ {1, 2, 3}. Now, we

show how to get the state of the intermediary system S2 as the output of the fixed quantum
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channel Λ1.

Perform no action on the first intervention, that is, make A1 = idS1 . Then, set A2 to

be the preparation of an arbitrary quantum state ϕ2 ∈ L(S2). Thus, we are specifying the

intervention A2 with trivial one-dimensional input system. Also, let A3 discard the system

S3, that is, define the intervention A3 = trS3 with trivial one-dimensional output system.

Then, we have

Υ(id, ϕ2, trS3) = Λ1(ρ1) = ρ2 (8.2)

For recovering the state of the initial system S1 proceed as similarly. Now, let the first

intervention A1 be the preparation of an arbitrary quantum state ϕ1 of S1. Let the second

intervention A2 be an arbitrary quantum channel. Then, discard the output system S3

making A3 = trS3 . Thus, we have

Υ(ϕ1,A2, trS3) = ρ1 (8.3)

For recovering the state of S3 as the action of Λ2 on Λ1(ρ1), consider the following control

strategy. Set A1 = idS1 , A2 = idS2 and A3 = idS3 . So in each round of the process we let

the system go through without acting on it. Then, we must have

Υ(id, id, id) = Λ2 ◦ Λ1(ρ1) = ρ3. (8.4)

In turn, quantum non-Markov processes take place in similar way, allowing for non-

trivial system-environment interactions. A general three-time-step quantum process maps

the sequence of interventions {A1,A2,A3} to the final quantum state

Υ(A1,A2,A3) = A3 ◦ Λ2 ◦ (A2 ⊗ idE2) ◦ Λ1 ◦ (A1 ⊗ idE1)(ρ), (8.5)

where the bipartite quantum state ρ ∈ L(S1⊗E1), and bipartite quantum channels Λ1 : L(S ′1⊗

E1)→ L(S2 ⊗ E2) and Λ2 : L(S ′2 ⊗ E2)→ L(S3) are fixed.

The quantum operation Υ above is called process tensor, and has been introduced for

dealing with multitime temporal correlations in quantum non-Markov processes. In case the

quantum bipartite channels Λ1 and Λ2 act non-trivially on environmental systems E1 and
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ρ Λ1 Λ2

S1 S ′1 S2 S ′2 S3 S ′3

E1 E1

ρ
A1

Λ1
A2

Λ2
A3

S1 S ′1 S2 S ′2 S3 S ′3

E1 E1

Figure 8.2: Quantum non-Markov processes with interventions.

E2, regarded as non-trivial Hilbert spaces, the quantum operation Υ is called non-Markov

process tensor. On the other hand, we recover the case of Markov process tensors in Eq. (8.1)

if E1, E2 are trivial one-dimensional environmental systems. Figure 8.2 shows a diagrammatic

representation of quantum non-Markov processes with interventions.

8.2 Interventional quantum Markov monogamy inequal-

ity for four-time-step process tensors

We move to derive the quantum Markov monogamy inequality arising out of an interven-

tional approach to quantum processes. Let Υ be a four-time-step process tensor. The action

of Υ on a sequence of interventions Ai : L(Si) → L(S ′i), with i ∈ {1, 2, 3, 4}, is therefore

defined as

Υ(A1,A2,A3,A4) = A4 ◦ Λ3 ◦ (A3 ⊗ idE3) ◦ Λ2 ◦ (A2 ⊗ idE2) ◦ Λ1 ◦ (A1 ⊗ idE1)(ρ1), (8.6)

where ρ ∈ L(S1⊗E1) is quantum state, and Λ1 : L(S ′1⊗E1)→ L(S2⊗E2), Λ1 : L(S ′2⊗E2)→

L(S ′3 ⊗E3), Λ1 : L(S ′3 ⊗E3)→ L(S4) are arbitrary quantum channels. Note we have a four-

time-step Markov process tensor whenever the environmental systems E1, E2 and E3 are

trivial systems.

Define the control strategy as in Figure 8.3 for arbitrary four-time-step process tensor Υ.
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Thus, we have defined the quantum states

υ1:4 = (idR1⊗S′
2
⊗ [A4 ◦ Λ3 ◦ (A3 ⊗ idE3) ◦ Λ2 ◦ (A2 ⊗ idE2) ◦ Λ1])

◦ (idR1 ⊗ SWAPS′
1,S

′
1
⊗ idE2) ◦ (idR1,S′

1
⊗ A1 ⊗ idE1)(α1 ⊗ ρ), (8.7)

υ1:3 = trE3 [(idR1⊗S′
2
⊗ [(A3 ⊗ idE3) ◦ Λ2 ◦ (A2 ⊗ idE2) ◦ Λ1])

◦ (idR1 ⊗ SWAPS′
1,S

′
1
⊗ idE2) ◦ (idR1,S′

1
⊗ A1 ⊗ idE1)(α1 ⊗ ρ)], (8.8)

υ2:4 = (idR2⊗S′
2
⊗ [A4 ◦ Λ3 ◦ (A3 ⊗ idE3) ◦ Λ2]) ◦ (idR2 ⊗ SWAPS′

2,S
′
2
⊗ idE2)

◦ (idR1⊗S′
2
⊗ [(A2 ⊗ idE2) ◦ Λ1 ◦ (A1 ⊗ idE1)])(α2 ⊗ ρ), (8.9)

υ2:3 = trE3 [(idR1⊗S′
2
⊗ [(A3 ⊗ idE3) ◦ Λ2]) ◦ (idR2 ⊗ SWAPS′

2,S
′
2
⊗ idE2)

◦ (idR1⊗S′
2
⊗ [(A2 ⊗ idE2) ◦ Λ1 ◦ (A1 ⊗ idE1)])(α2 ⊗ ρ)], (8.10)

We can define the information quantities such that it is possible to make sense of the

quantum Markov inequality for the process tensor formalism. Now, we have several quantities

playing the same role as coherent information in the quantum information inequalities. Under

the protocol in Eqs. (8.7)-(8.10) we can define the information quantities

Iq1(j : k) = [H(Sj, Rj)−H(Sj, Rj, Sk)]υj:k , (8.11)

Iq2(j : k) = [H(Sk)−H(Sj, Rj, Sk)]υj:k , (8.12)

Iq3(j : k) = [H(Sj, Sk)−H(Sj, Rj, Sk)]υj:k , (8.13)

with 1 ≤ j < k ≤ 4.

In fact, for any four-time-step Markov process tensor Υ1:4 it holds the interventional
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quantum Markov monogamy inequality

Iqi
(1; 4) + Iqi

(2; 3) ≥ Iqi
(1; 3) + Iqi

(2; 4), (8.14)

for i ∈ {1, 2, 3}. Here, the quantum state αi ∈ L(Ri ⊗ S ′i) is the purification of the system

Si, with i = 1, 2.

We now follow the proof in Ref. [1] of the information inequality above. We focus on the

intervantional quantum Markov monogamy for Iq1 , nevertheless, the proof for the Iq2 and Iq3

is completely analogous.

For any four-time-step Markov process tensor Υ1:4, Eqs. (8.7)-(8.10) reduce to

υ1:4 = (idR1,S′
1
⊗ (A4 ◦ Λ3 ◦ A3 ◦ Λ2 ◦ A2 ⊗ Λ1)) ◦ (idR1 ⊗ SWAPS′

1,S
′
1
)(α1 ⊗ A1(ρ)), (8.15)

υ1:3 = (idR1,S′
1
⊗ (A3 ◦ Λ2 ◦ A2 ⊗ Λ1)) ◦ (idR1 ⊗ SWAPS′

1,S
′
1
)(α1 ⊗ A1(ρ)), (8.16)

υ2:4 = (idR1,S′
1
⊗ (A4 ◦ Λ3 ◦ A3 ◦ Λ2)) ◦ (idR2 ⊗ SWAPS′

2,S
′
2
)(α1 ⊗ (A2 ◦ A1)(ρ)), (8.17)

υ2:3 = (idR1,S′
1
⊗ (A3 ◦ Λ2)) ◦ (idR2 ⊗ SWAPS′

2,S
′
2
)(α1 ⊗ (A2 ◦ Λ1 ◦ A1)(ρ)), (8.18)

with quantum state ρ ∈ L(S1), and quantum operations Λi : L(S ′i) → L(Si+1), where i ∈

{1, 2, 3}.

We start our proof with the case where Si ∼= S ′i. Then, define a control scheme as in

Fig. 8.3 with identity control operations Ai = idSi
. Let the quantum channels Λi have

isometric extension U : Si → Si+1 ⊗ Ei.

For any Markov process tensor Υ we haveH(Sj, Rj) = H(Sj)+H(Rj) andH(Sj, Rj, Sk) =

H(Sj) +H(Rj, Sk), with j < k. Then, the terms in Eq. (8.14) for Iq1 as defined in Eq. (8.11)

becomes

Iq1(1 : 4) = H(R1)−H(E1, E2, E3), (8.19)

Iq1(2 : 3) = H(R2)−H(E2) (8.20)

Iq1(1 : 3) = H(R1)−H(E1, E2), (8.21)

Iq1(2 : 4) = H(R2)−H(E2, E3). (8.22)
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The rest of the derivation follows using strong subadditivity of quantum entropy, as

before in the proof of the quantum Markov monogamy inequality in (7.8). This holds since

the entropies in the second terms in each of the above equations comes from the same

environmental state.

Now, we consider the general case of arbitrary systems Si and S ′i, which are not necessarily

isomorphic. The hint is to absorb the action of the interventions into the process, thus

generating a Markov process tensor. That is, we define a Markov process with initial state

A1(ρ1) going through evolution maps A2 ◦ Λ1, A3 ◦ Λ2 and A4 ◦ Λ3.

Let the interventions Ai have isometric representation V : Si → S ′i⊗Ai. Then, the second

terms in Eqs. (8.19)-(8.22) contain also the systems Ai. We can get back the same type of

inequality under the substitution

H(E1, A2, E2, A3, E3, A4)→ H(Ẽ1, Ẽ2, Ẽ3), (8.23)

H(E2, A3)→ H(Ẽ2), (8.24)

H(E1, A2, E2, A3)→ H(Ẽ1, Ẽ2), (8.25)

H(E2, A3, E3, A4)→ H(Ẽ2, Ẽ3), (8.26)

with Ẽ1 := E1 ⊗ A2, Ẽ2 := E2 ⊗ A3, and Ẽ3 := E3 ⊗ A4. The proof is concluded using

strong subadditivity of quantum entropy. The interested reader is invited to check the same

reasoning holds for the quantities Iq2 and Iq3 .

We show how the interventional approach to information inequalities is relevant in wit-

nessing the non-Markov process considered in chapter 7. Now, the non-Markov process in

bottom panel of Figure 7.3 becomes the process tensor in Figure 8.4. We use the same initial

state and unitary evolution defined in Eq. (7.47) and Eq. (6.32), respectively.

The interventional Markov monogamy inequality in Eq. (8.14) supports the definition of

the interventional witnesses of non-Markovianity

M4qi
:= Iqi

(1 : 4) + Iqi
(2 : 3)− Iqi

(1 : 3)− Iqi
(2 : 4), (8.27)

with i = 1, 2, 3.
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The quantity defined above is positive semi-definite for any Markov process tensor Υ1:4.

Thus, finding a negative value for any M4qi
(i=1,2,3) implies the process tensor is non-

Markovian. In Fig. 8.5 we present the plot of the witnesses in Eq. (8.27) for the process

tensor mentioned above.

Interestingly, the quantities M4q2 and M4q3 are negative for any value of the parameter

λ, thus, efficiently witnessing the non-Markovianity in this example. On the other hand, the

quantity M4q1 is non-negative only in the region 0.30 ≤ λ ≤ 0.55.
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Figure 8.3: Control strategy for interventional information inequalities. Here we
define an interventional scheme appropriate for defining quantum information inequalities.
In panel (a) we feed the system S ′1 with part of the state α1, defined as the purification of
the system S1. The remaining quantum operations {Ai : i = 1, 2, 3, 4} are arbitrary. This
defines the quantum state υ1:4 in Eq. (8.7). In panel (b) we define the quantum state υ1:3
in Eq. (8.8) similarly. Nevertheless, we feed the system S ′2 with an arbitrary quantum state
and trace out its output system S4. Panel (c) represents υ2:4 in Eq. (8.9). This is defined
similarly to panel (a), but we feed the system S ′2 with part of the state α2, defined as the
purification of S2. Panel (d) represents υ2:3 in Eq. (8.10). This turn we feed S ′3 with an
arbitrary quantum state and trace out its output S4.
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Figure 8.4: Non-Markov process tensor. We define the non-Markov process in bottom
panel of Figure 7.3, but now allowing for interventions. The state ψ is defined as in Eq. (7.47).
The unitary operations U1, U2 and U3 are defined as in Eq. (6.32).
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Figure 8.5: Violation of the interventional Markov monogamy inequalities. Inter-
ventional quantum Markov monogamy with respect to Iq1 is not violated only for the region
0.30 ≤ λ ≤ 0.55 (shadded in blue). The interventional information inequalities with respect
to Iq2 and Iq3 are violated for any value of λ, thus perfectly witnessing the non-Markovianity
of the process tensor considered. Figure addapted from [1].
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Chapter 9

Discussion

We have considered the development of novel information conditions called Markov monogamy

inequalities. Those are limits on classical and quantum information processing which appear

to be complementary to the data processing inequalities. Therefore, as argued in chapter 1,

this novel conditions have intrinsic value.

Moreover, we have also considered how information inequalities can be useful for wit-

nessing classical and quantum non-Markovianity. Importantly, we have provided examples

of non-Markov processes violating the Markov monogamy, but remaining all data processing

inequalities still valid. Thus, Markov monogamy conditions have the potential to witness

non-Markovianity beyond data processing inequalities in particular cases. Therefore, the

novel inequalities were shown to be of practical value as well.

Now, we mention open problems and possible follow-ups related to this thesis. Firstly, the

derivation of the general form of Markov monogamy inequalities remains as an open problem.

Techniques similar to the presented here were used in the formulation of novel experi-

ments [69]. Therefore, finding the Markov monogamy inequalities to be useful in practical

experimental situations would be of remarkable relevance as well.

Finally, we remark that associating information inequalities to operational results is of

main importance in information theory. Therefore, this is left as a key follow-up of this

thesis.
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[2] M. Capela, L. C. Céleri, K. Modi, and R. Chaves, “Monogamy of temporal correlations:

Witnessing non-markovianity beyond data processing,” Physical Review Research, vol. 2,

no. 1, p. 013350, 2020.

[3] C. E. Shannon, “A mathematical theory of communication,” The Bell system technical

journal, vol. 27, no. 3, pp. 379–423, 1948.

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory, second edition. John

Wiley & Sons, 2005.

[5] R. W. Yeung, Information theory and network coding. Springer Science & Business

Media, 2008.

[6] I. Csiszár and J. Körner, Information theory: coding theorems for discrete memoryless

systems. Cambridge University Press, 2011.

[7] D.-M. Arnold, “On the data-processing inequality in the mismatch case,” in Interna-

tional Symposium on Information Theory, 2004. ISIT 2004. Proceedings., p. 266, IEEE,

2004.

[8] N. Merhav, “Data-processing inequalities based on a certain structured class of informa-

tion measures with application to estimation theory,” IEEE Transactions on Information

Theory, vol. 58, no. 8, pp. 5287–5301, 2012.

95



[9] W. Kang and S. Ulukus, “A new data processing inequality and its applications in

distributed source and channel coding,” IEEE Transactions on Information Theory,

vol. 57, no. 1, pp. 56–69, 2010.

[10] F. du Pin Calmon, Y. Polyanskiy, and Y. Wu, “Strong data processing inequalities for

input constrained additive noise channels,” IEEE Transactions on Information Theory,

vol. 64, no. 3, pp. 1879–1892, 2017.

[11] S. Kamath and C. Nair, “The strong data processing constant for sums of iid ran-

dom variables,” in 2015 IEEE International Symposium on Information Theory (ISIT),

pp. 2550–2552, IEEE, 2015.

[12] M. Raginsky, “Logarithmic sobolev inequalities and strong data processing theorems

for discrete channels,” in 2013 IEEE International Symposium on Information Theory,

pp. 419–423, IEEE, 2013.

[13] N. Merhav, “Data processing theorems and the second law of thermodynamics,” IEEE

Transactions on Information Theory, vol. 57, no. 8, pp. 4926–4939, 2011.

[14] V. Anantharam, A. Gohari, S. Kamath, and C. Nair, “On hypercontractivity and a data

processing inequality,” in 2014 IEEE International Symposium on Information Theory,

pp. 3022–3026, IEEE, 2014.

[15] C. E. Shannon, “A note on a partial ordering for communication channels,” Information

and Control, vol. 1, no. 4, pp. 390–397, 1958.
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1973.

[33] B. R. James, Probabilidade: um curso em ńıvel intermediário. IMPA, 2015.
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